Najia Mohamad Ali, Jha Deepak K, Zhang Cheng, Laurent Benoit, Kubaczka Caroline, Markel Arianna, Li Christopher, Morris Vivian, Tompkins Allison, Hensch Luca, Qin Yue, Chapuy Bjoern, Huang Yu-Chung, Morse Michael, Marunde Matthew R, Vaidya Anup, Gillespie Zachary B, Howard Sarah A, North Trista E, Dominguez Daniel, Keogh Michael-Christopher, Schlaeger Thorsten M, Shi Yang, Li Hu, Shipp Margaret M, Blainey Paul C, Daley George Q
Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
bioRxiv. 2025 Feb 5:2025.01.31.635709. doi: 10.1101/2025.01.31.635709.
Genes involved in the regulation of chromatin structure are frequently disrupted in cancer, contributing to an aberrant transcriptome and phenotypic plasticity. Yet, therapeutics targeting mutant forms of chromatin-modifying enzymes have yielded only modest clinical utility, underscoring the difficulty of targeting the epigenomic underpinnings of aberrant gene regulatory networks. Here, we sought to identify novel epigenetic vulnerabilities in diffuse large B-cell lymphoma (DLBCL). Through phenotypic screens and biochemical analysis, we demonstrated that inhibition of the H3K9 demethylases KDM4A and KDM4C elicits potent, subtype-agnostic cytotoxicity by antagonizing transcriptional networks associated with B-cell identity and epigenetically rewiring heterochromatin. KDM4 demethylases associated with the KRAB zinc finger ZNF587, and their enzymatic inhibition led to DNA replication stress and DNA damage-einduced cGAS-STING activation. Broad surveys of transcriptional data from patients also revealed KDM4 family dysregulation in several other cancer types. To explore this potential therapeutic avenue, we performed high-throughput small molecule screens with H3K9me3 nucleosome substrates and identified novel KDM4 demethylase inhibitors. AI-guided protein-ligand binding predictions suggested diverse modes of action for various small molecule hits. Our findings underscore the relevance of targeting fundamental transcriptional and epigenetic mechanisms for anti-cancer therapy.
参与染色质结构调控的基因在癌症中经常被破坏,导致转录组异常和表型可塑性。然而,针对染色质修饰酶突变形式的疗法仅产生了适度的临床效用,这凸显了针对异常基因调控网络的表观基因组基础的困难。在此,我们试图确定弥漫性大B细胞淋巴瘤(DLBCL)中新型的表观遗传脆弱性。通过表型筛选和生化分析,我们证明抑制H3K9去甲基化酶KDM4A和KDM4C可通过拮抗与B细胞身份相关的转录网络并在表观遗传上重塑异染色质,引发强效的、不依赖亚型的细胞毒性。KDM4去甲基化酶与KRAB锌指ZNF587相关,它们的酶抑制导致DNA复制应激和DNA损伤诱导的cGAS-STING激活。对患者转录数据的广泛调查还揭示了KDM4家族在其他几种癌症类型中的失调。为了探索这一潜在的治疗途径,我们用H3K9me3核小体底物进行了高通量小分子筛选,并鉴定了新型KDM4去甲基化酶抑制剂。人工智能引导的蛋白质-配体结合预测表明各种小分子命中物具有不同的作用模式。我们的研究结果强调了针对基本转录和表观遗传机制进行抗癌治疗的相关性。