Suppr超能文献

线粒体在糖尿病肾病中的作用及潜在治疗靶点

The Role of Mitochondria in Diabetic Kidney Disease and Potential Therapeutic Targets.

作者信息

Takasu Masanobu, Kishi Seiji, Nagasu Hajime, Kidokoro Kengo, Brooks Craig R, Kashihara Naoki

机构信息

Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan.

Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Kidney Int Rep. 2024 Nov 9;10(2):328-342. doi: 10.1016/j.ekir.2024.10.035. eCollection 2025 Feb.

Abstract

Diabetic kidney disease (DKD) is recognized worldwide as a leading cause of end-stage renal failure. Although therapies that target glomerular hemodynamics and can inhibit disease progression have been developed, there is currently no fundamental cure for the disease. Mitochondria play an important role in cellular respiration, producing adenosine triphosphate (ATP) by oxidative phosphorylation, and are essential for renal function, especially in proximal tubular cells (PTCs). In diabetic conditions, maintaining mitochondrial health is vital for preserving renal function. Under diabetic conditions, excessive reactive oxygen species (ROS) can damage mitochondrial DNA (mtDNA), leading to renal dysfunction. Strategies targeting mitochondrial function, such as AMP-activated protein kinase (AMPK) activation and modulation of nitric oxide (NO) availability, are promising for suppressing diabetic nephropathy. The immune response to DKD, initiated by detecting damage- and pathogen-associated molecular patterns, has a significant impact on the progression of DKD, including leakage of mtDNA and RNA, leading to inflammation through various pathways. This contributes to renal impairment characterized by hyperfiltration, endothelial dysfunction, and albuminuria. Mitochondrial energy metabolism and dynamics induced by hyperglycemia precede the onset of albuminuria and histological changes in the kidneys. The increased mitochondrial fission and decreased fusion that occur under diabetic conditions result in ATP depletion and exacerbate cellular dysfunction. Therapeutic strategies focused on restoring mitochondrial function are promising for slowing the progression of DKD and reduce the adverse effects on renal function. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 (GLP-1) receptor agonists, already in clinical use, have been shown to be protective for mitochondria, and nuclear factor erythroid 2-related factor 2 (Nrf2) activation and mitochondrial dynamics are promising drug discovery targets for further research.

摘要

糖尿病肾病(DKD)在全球范围内被公认为终末期肾衰竭的主要原因。尽管已经开发出了针对肾小球血流动力学并能抑制疾病进展的疗法,但目前该疾病仍无法得到根本性治愈。线粒体在细胞呼吸中起着重要作用,通过氧化磷酸化产生三磷酸腺苷(ATP),对肾功能至关重要,尤其是在近端肾小管细胞(PTCs)中。在糖尿病状态下,维持线粒体健康对于保护肾功能至关重要。在糖尿病条件下,过量的活性氧(ROS)会损伤线粒体DNA(mtDNA),导致肾功能障碍。针对线粒体功能的策略,如激活AMP激活的蛋白激酶(AMPK)和调节一氧化氮(NO)的可用性,有望抑制糖尿病肾病。对DKD的免疫反应由检测损伤相关分子模式和病原体相关分子模式引发,对DKD的进展有重大影响,包括mtDNA和RNA的泄漏,通过各种途径导致炎症。这会导致以超滤、内皮功能障碍和蛋白尿为特征的肾功能损害。高血糖诱导的线粒体能量代谢和动力学变化先于蛋白尿的出现和肾脏的组织学改变。糖尿病条件下发生的线粒体裂变增加和融合减少会导致ATP耗竭并加剧细胞功能障碍。专注于恢复线粒体功能的治疗策略有望减缓DKD的进展并减少对肾功能的不良影响。已在临床使用的钠-葡萄糖协同转运蛋白2抑制剂(SGLT2is)和胰高血糖素样肽1(GLP-1)受体激动剂已被证明对线粒体有保护作用,激活核因子红细胞2相关因子2(Nrf2)和线粒体动力学是有前景的进一步研究的药物发现靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验