Suppr超能文献

一种预测分子抗菌活性的机器学习方法。

A machine learning method for predicting molecular antimicrobial activity.

作者信息

Lin Bangjiang, Yan Shujie, Zhen Bowen

机构信息

Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362216, China.

College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.

出版信息

Sci Rep. 2025 Feb 24;15(1):6559. doi: 10.1038/s41598-025-91190-x.

Abstract

In response to the increasing concern over antibiotic resistance and the limitations of traditional methods in antibiotic discovery, we introduce a machine learning-based method named MFAGCN. This method predicts the antimicrobial efficacy of molecules by integrating three types of molecular fingerprints-MACCS, PubChem, and ECFP-along with molecular graph representations as input features, with a specific focus on molecular functional groups. MFAGCN incorporates an attention mechanism to assign different weights to the importance of information from different neighboring nodes. Comparative experiments with baseline models on two public datasets demonstrate MFAGCN's superior performance. Additionally, we conducted an analysis of the functional group distribution in both the training and test sets to validate the model's predictions. Furthermore, structural similarity analyses with known antibiotics are performed to prevent the rediscovery of established antibiotics. This approach enables researchers to rapidly screen molecules with potent antimicrobial properties and facilitates the identification of functional groups that influence antimicrobial performance, providing valuable insights for further antibiotic development.

摘要

针对对抗生素耐药性的日益关注以及传统抗生素发现方法的局限性,我们引入了一种名为MFAGCN的基于机器学习的方法。该方法通过整合三种类型的分子指纹(MACCS、PubChem和ECFP)以及分子图表示作为输入特征来预测分子的抗菌功效,特别关注分子官能团。MFAGCN采用注意力机制为来自不同相邻节点的信息的重要性分配不同的权重。在两个公共数据集上与基线模型进行的对比实验证明了MFAGCN的优越性能。此外,我们对训练集和测试集中的官能团分布进行了分析,以验证模型的预测。此外,还与已知抗生素进行了结构相似性分析,以防止重新发现已有的抗生素。这种方法使研究人员能够快速筛选具有强大抗菌特性的分子,并有助于识别影响抗菌性能的官能团,为进一步的抗生素开发提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db54/11850884/58ab43f0aea5/41598_2025_91190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验