Suppr超能文献

利用基于机器学习的定量构效关系(QSAR)、线性约束势全原子分子动力学(LB-PaCS-MD)和实验分析揭示依布硒啉和依布硫衍生物对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的抗病毒抑制活性。

Unveiling the antiviral inhibitory activity of ebselen and ebsulfur derivatives on SARS-CoV-2 using machine learning-based QSAR, LB-PaCS-MD, and experimental assay.

作者信息

Sinsulpsiri Silpsiri, Nishii Yuji, Xu-Xu Qing-Feng, Miura Masahiro, Wilasluck Patcharin, Salamteh Kanokwan, Deetanya Peerapon, Wangkanont Kittikhun, Suroengrit Aphinya, Boonyasuppayakorn Siwaporn, Duan Lian, Harada Ryuhei, Hengphasatporn Kowit, Shigeta Yasuteru, Shi Liyi, Maitarad Phornphimon, Rungrotmongkol Thanyada

机构信息

Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Japan.

出版信息

Sci Rep. 2025 Feb 26;15(1):6956. doi: 10.1038/s41598-025-91235-1.

Abstract

Ebsulfur and ebselen derivatives that were proven to be potent inhibitors against the main protease (M) of SARS-CoV-2 which is an essential enzyme for viral replication were chosen to study the quantitative structure-activity relationship (QSAR) analysis using a classical multiple linear regression (MLR) and a machine learning approach of random forest (RF) and artificial neural network (ANN) in order to find the relationship between molecular structural properties and biological inhibitory activities. With the statistical criteria, the R values of MLR, RF, and ANN models for the training set were 0.83, 0.82, and 0.92, respectively. The RMSE values of the test were considered for model evaluation, and the results were 0.27, 0.18, and 0.09 for MLR, RF, and ANN models, respectively. Therefore, the ANN model was the best-obtained model for predicting the M inhibitory activity of thirteen new synthetic ebselen analogs that haven't tested the biological assay before. Notably, our predicted inhibitory activities against SARS-CoV-2 were then examined using enzyme-based assays and cytotoxicity tests, which found that compound P8 resulted in a good potential candidate for SARS-CoV-2 M inhibitory activity. Furthermore, the molecular dynamics simulations were performed to study the dynamic interaction of ligand and binding site; the results showed a binding pathway and mechanism of compound P8 with key residues surrounding the active site of SARS-CoV-2 M, which is useful for further development of ebselen derivatives.

摘要

二苯二硫醚和二苯二硒醚衍生物被证明是严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶(M)的有效抑制剂,该蛋白酶是病毒复制所必需的酶。为了找出分子结构性质与生物抑制活性之间的关系,我们选择使用经典多元线性回归(MLR)以及随机森林(RF)和人工神经网络(ANN)的机器学习方法来研究定量构效关系(QSAR)分析。根据统计标准,训练集的MLR、RF和ANN模型的R值分别为0.83、0.82和0.92。考虑用测试集的均方根误差(RMSE)值来评估模型,结果MLR、RF和ANN模型的RMSE值分别为0.27、0.18和0.09。因此,ANN模型是预测13种之前未进行生物活性测试的新型合成二苯二硒醚类似物对M抑制活性的最佳模型。值得注意的是,我们随后使用基于酶的分析和细胞毒性测试来检验对SARS-CoV-2的预测抑制活性,结果发现化合物P8是具有良好SARS-CoV-2 M抑制活性潜力的候选物。此外,进行了分子动力学模拟以研究配体与结合位点的动态相互作用;结果显示了化合物P8与SARS-CoV-2 M活性位点周围关键残基的结合途径和机制,这对二苯二硒醚衍生物的进一步开发很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc0/11865625/740666a3374f/41598_2025_91235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验