Hensel Zach
ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Portugal.
Elife. 2025 Feb 28;13:RP98102. doi: 10.7554/eLife.98102.
Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated 'mutational fitness' of substitutions, a measurement of the difference between a substitution's observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.
准确估计突变对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒适应性的影响,可以为公共卫生应对措施提供信息,如疫苗研发和预测新变种的影响;它还可以阐明生物学机制,包括那些与令人关注的变种出现相关的机制。最近,Lan等人报道了一种SARS-CoV-2二级结构模型及其潜在的硫酸二甲酯反应性数据(Lan等人,2022年)。我研究了碱基反应性及其衍生的二级结构模型是否能解释SARS-CoV-2系统发育树中数百万患者序列中观察到的不同核苷酸替换频率的一些变异性。将核苷酸碱基配对与替换的估计“突变适应性”进行比较,“突变适应性”是替换的观察频率与预期频率之间差异的一种度量,与病毒适应性的其他估计相关(Bloom和Neher,2023年)。这种比较表明,二级结构通常可以预测替换频率,碱基配对位置的替换频率会显著降低。聚焦于最常见的替换类型C→U的突变适应性,我描述了碱基配对位置上表征主要SARS-CoV-2变种的C→U替换;当仅考虑替换频率时,此类突变对适应性的影响可能比预期的更大。