Suppr超能文献

人工智能与患者输入科学:来自多发性硬化症患者的视角

Artificial intelligence and science of patient input: a perspective from people with multiple sclerosis.

作者信息

Helme Anne, Kalra Dipak, Brichetto Giampaolo, Peryer Guy, Vermersch Patrick, Weiland Helga, White Angela, Zaratin Paola

机构信息

Multiple Sclerosis International Federation, London, United Kingdom.

Dept. Medical Informatics & Statistics, The European Institute for Innovation through Health Data, Ghent University Hospital, Gent, Belgium.

出版信息

Front Immunol. 2025 Feb 17;16:1487709. doi: 10.3389/fimmu.2025.1487709. eCollection 2025.

Abstract

Artificial intelligence (AI) can play a vital role in achieving a shift towards predictive, preventive, and personalized medicine, provided we are guided by the science with and of patient input. Patient-reported outcome measures (PROMs) represent a unique opportunity to capture experiential knowledge from people living with health conditions and make it scientifically relevant for all other stakeholders. Despite this, there is limited uptake of the use of standardized outcomes including PROMs within the research and healthcare system. This perspective article discusses the challenges of using PROMs at scale, with a focus on multiple sclerosis. AI approaches can enable learning health systems that improve the quality of care by examining the care health systems presently give, as well as accelerating research and innovation. However, we argue that it is crucial that advances in AI - whether relating to research, clinical practice or health systems policy - are not developed in isolation and implemented 'to' people, but in collaboration 'with' them. This implementation of science with patient input, which is at the heart of the Global PROs for Multiple Sclerosis (PROMS) Initiative, will ensure that we maximize the potential benefits of AI for people with MS, whilst avoiding unintended consequences.

摘要

人工智能(AI)在实现向预测性、预防性和个性化医疗的转变中可以发挥至关重要的作用,前提是我们以科学为指导,并纳入患者的意见。患者报告结局测量(PROMs)提供了一个独特的机会,可以从患有健康问题的人群中获取经验知识,并使其对所有其他利益相关者具有科学相关性。尽管如此,在研究和医疗系统中,包括PROMs在内的标准化结局的使用情况仍然有限。这篇观点文章讨论了大规模使用PROMs所面临的挑战,重点是多发性硬化症。人工智能方法可以推动学习型医疗系统的发展,通过审视当前医疗系统提供的护理来提高护理质量,同时加速研究和创新。然而,我们认为至关重要的是,人工智能的进步——无论是与研究、临床实践还是卫生系统政策相关——都不应孤立地开发并“强加于”人们,而应与他们“合作”开发。这种在患者参与下实施科学的做法是全球多发性硬化症患者报告结局(PROMS)倡议的核心,将确保我们最大限度地发挥人工智能对多发性硬化症患者的潜在益处,同时避免意外后果。

相似文献

1
Artificial intelligence and science of patient input: a perspective from people with multiple sclerosis.
Front Immunol. 2025 Feb 17;16:1487709. doi: 10.3389/fimmu.2025.1487709. eCollection 2025.
2
The agenda of the global patient reported outcomes for multiple sclerosis (PROMS) initiative: Progresses and open questions.
Mult Scler Relat Disord. 2022 May;61:103757. doi: 10.1016/j.msard.2022.103757. Epub 2022 Mar 23.
3
Artificial Intelligence and Multiple Sclerosis.
Curr Neurol Neurosci Rep. 2024 Aug;24(8):233-243. doi: 10.1007/s11910-024-01354-x. Epub 2024 Jun 28.
4
Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies.
Lancet Digit Health. 2023 Mar;5(3):e168-e173. doi: 10.1016/S2589-7500(22)00252-7.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Key challenges for delivering clinical impact with artificial intelligence.
BMC Med. 2019 Oct 29;17(1):195. doi: 10.1186/s12916-019-1426-2.
7
A future of AI-driven personalized care for people with multiple sclerosis.
Front Immunol. 2024 Aug 19;15:1446748. doi: 10.3389/fimmu.2024.1446748. eCollection 2024.
9
Role of artificial intelligence in multiple sclerosis management.
Eur Rev Med Pharmacol Sci. 2024 May;28(10):3542-3547. doi: 10.26355/eurrev_202405_36289.

本文引用的文献

2
Digital Biomarkers for Neurodegenerative Disease.
JAMA Neurol. 2025 Jan 1;82(1):5-6. doi: 10.1001/jamaneurol.2024.3533.
3
Integrating large language models in care, research, and education in multiple sclerosis management.
Mult Scler. 2024 Oct;30(11-12):1392-1401. doi: 10.1177/13524585241277376. Epub 2024 Sep 23.
4
A future of AI-driven personalized care for people with multiple sclerosis.
Front Immunol. 2024 Aug 19;15:1446748. doi: 10.3389/fimmu.2024.1446748. eCollection 2024.
7
The challenge of using patient reported outcome measures in clinical practice: how do we get there?
J Patient Rep Outcomes. 2024 Mar 21;8(1):35. doi: 10.1186/s41687-024-00711-1.
8
Artificial intelligence in neurology: opportunities, challenges, and policy implications.
J Neurol. 2024 May;271(5):2258-2273. doi: 10.1007/s00415-024-12220-8. Epub 2024 Feb 17.
9
Use of wearables among Multiple Sclerosis patients and healthcare Professionals: A scoping review.
Int J Med Inform. 2024 Apr;184:105376. doi: 10.1016/j.ijmedinf.2024.105376. Epub 2024 Feb 13.
10
Global health in the age of AI: Safeguarding humanity through collaboration and action.
PLOS Glob Public Health. 2024 Jan 11;4(1):e0002778. doi: 10.1371/journal.pgph.0002778. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验