Chen Siwen, Hou Zhipeng, Xiao Miaomiao, Wu Peng, Yang Yuanyuan, Han Siyu, Xia Jiangli, Hu Jianshe, Zhang Kai, Yang Liqun
Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China; Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, PR China.
Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, PR China.
Carbohydr Polym. 2025 May 1;355:123350. doi: 10.1016/j.carbpol.2025.123350. Epub 2025 Feb 4.
Compromised skin barrier fails to prevent pathogenic bacterial invasion, leading to wound infection and potentially severe tissue damage, for which conventional wound dressings provide inadequate therapeutic outcomes. Herein, we have developed a multifunctional injectable hydrogel (QCS-APA/P@D@C) based on quaternized chitosan (QCS) and aldehyde-modified aliphatic polycarbonate (APA), incorporating Prussian Blue (PB) @Polydopamine (PDA) @Cu (P@D@C) submicron particles (SPs). This novel hydrogel exhibits photothermal antibacterial properties, on-demand removal capability, and Cu-facilitated wound healing enhancement. The QCS-APA/P@D@C hydrogel, crosslinked via dynamic Schiff-base bonds, exhibits remarkable antibacterial efficacy (>99 %) against various bacteria, including multidrug-resistant (MDR) bacteria, through the synergistic effects of QCS, Cu, and 808 nm near-infrared (NIR) photothermal effect. The hydrogel demonstrates rapid degradation (~12 min) upon exposure to N-acetylcysteine (NAC), facilitating on-demand removal and minimizing secondary trauma during dressing changes. Furthermore, the sustained release of Cu within 1-10 μM significantly enhances the migration and tube formation of human umbilical vein endothelial cells (HUVECs). In a Staphylococcus aureus (S. aureus)-infected wound model of Sprague-Dawley (SD) rats, the QCS-APA/P@D@C hydrogel demonstrated effectively modulating wound inflammation, promoting collagen deposition and angiogenesis, and accelerating wound closure. These findings demonstrate that the QCS-APA/P@D@C hydrogel can effectively promote the healing of bacterially infected wounds.
受损的皮肤屏障无法阻止病原菌入侵,导致伤口感染并可能造成严重的组织损伤,而传统伤口敷料的治疗效果并不理想。在此,我们基于季铵化壳聚糖(QCS)和醛改性脂肪族聚碳酸酯(APA)开发了一种多功能可注射水凝胶(QCS-APA/P@D@C),并掺入了普鲁士蓝(PB)@聚多巴胺(PDA)@铜(P@D@C)亚微米颗粒(SPs)。这种新型水凝胶具有光热抗菌性能、按需清除能力以及铜促进伤口愈合的增强作用。通过动态席夫碱键交联的QCS-APA/P@D@C水凝胶,通过QCS、铜和808nm近红外(NIR)光热效应的协同作用,对包括耐多药(MDR)细菌在内的各种细菌表现出显著的抗菌效果(>99%)。该水凝胶在暴露于N-乙酰半胱氨酸(NAC)后显示出快速降解(约12分钟),便于按需清除并最大限度减少换药过程中的二次创伤。此外,1-10μM范围内铜的持续释放显著增强了人脐静脉内皮细胞(HUVECs)的迁移和管腔形成。在Sprague-Dawley(SD)大鼠的金黄色葡萄球菌(S. aureus)感染伤口模型中,QCS-APA/P@D@C水凝胶有效调节伤口炎症,促进胶原蛋白沉积和血管生成,并加速伤口闭合。这些发现表明,QCS-APA/P@D@C水凝胶可有效促进细菌感染伤口的愈合。