Zerdes Ioannis, Matikas Alexios, Mezheyeuski Artur, Manikis Georgios, Acs Balazs, Johansson Hemming, Boyaci Ceren, Boman Caroline, Poncet Coralie, Ignatiadis Michail, Bai Yalai, Rimm David L, Cameron David, Bonnefoi Hervé, Bergh Jonas, MacGrogan Gaetan, Foukakis Theodoros
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Theme Cancer, Karolinska Comprehensive Cancer Center and University Hospital, Stockholm, Sweden.
NPJ Breast Cancer. 2025 Mar 7;11(1):23. doi: 10.1038/s41523-025-00730-1.
Breast cancer (BC) represents a heterogeneous ecosystem and elucidation of tumor microenvironment components remains essential. Our study aimed to depict the composition and prognostic correlates of immune infiltrate in early BC, at a multiplex and spatial resolution. Pretreatment tumor biopsies from patients enrolled in the EORTC 10994/BIG 1-00 randomized phase III neoadjuvant trial (NCT00017095) were used; the CNN11 classifier for H&E-based digital TILs (dTILs) quantification and multiplex immunofluorescence were applied, coupled with machine learning (ML)-based spatial features. dTILs were higher in the triple-negative (TN) subtype, and associated with pathological complete response (pCR) in the whole cohort. Total CD4+ and intra-tumoral CD8+ T-cells expression was associated with pCR. Higher immune-tumor cell colocalization was observed in TN tumors of patients achieving pCR. Immune cell subsets were enriched in TP53-mutated tumors. Our results indicate the feasibility of ML-based algorithms for immune infiltrate characterization and the prognostic implications of its abundance and tumor-host interactions.
乳腺癌(BC)代表了一个异质性的生态系统,阐明肿瘤微环境成分仍然至关重要。我们的研究旨在以多重和空间分辨率描绘早期BC中免疫浸润的组成及其预后相关性。使用了参与欧洲癌症研究与治疗组织(EORTC)10994/BIG 1-00随机III期新辅助试验(NCT00017095)的患者的预处理肿瘤活检样本;应用基于苏木精和伊红(H&E)的数字肿瘤浸润淋巴细胞(dTILs)定量的CNN11分类器和多重免疫荧光,并结合基于机器学习(ML)的空间特征。三阴性(TN)亚型中的dTILs更高,并且与整个队列中的病理完全缓解(pCR)相关。总CD4 +和肿瘤内CD8 + T细胞表达与pCR相关。在实现pCR的患者的TN肿瘤中观察到更高的免疫-肿瘤细胞共定位。免疫细胞亚群在TP53突变的肿瘤中富集。我们的结果表明基于ML的算法用于免疫浸润特征描述的可行性及其丰度和肿瘤-宿主相互作用的预后意义。