Suppr超能文献

一种针对鲍曼不动杆菌的多表位疫苗的研发:对抗抗菌药物耐药性的综合方法。

Development of a multi-epitope vaccine against Acinetobacter baumannii: A comprehensive approach to combating antimicrobial resistance.

作者信息

Beig Masoumeh, Sholeh Mohammad, Moradkasani Safoura, Shahbazi Behzad, Badmasti Farzad

机构信息

Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.

Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.

出版信息

PLoS One. 2025 Mar 10;20(3):e0319191. doi: 10.1371/journal.pone.0319191. eCollection 2025.

Abstract

BACKGROUND

The World Health Organization has categorized Acinetobacter baumannii (A. baumannii) as a critical priority pathogen due to its high antibiotic resistance. This resistance complicates treatment and underscores the urgent need for new antibiotics and strategies. This study developed a multi-epitope vaccine (MEV) to address this significant public health threat.

METHODS

This study employed a computational approach to design MEV targeting A. baumannii strain VB7036. Surface-exposed proteins were identified using PSORTb and TMHMM, followed by antigenicity and allergenicity predictions using VaxiJen and AlgPred. Linear B-cell epitopes and MHC-II binding sites were predicted using BepiPred and TepiTool, while physicochemical properties were analyzed with ExPASy ProtParam and Protein-Sol. The MEV construct was validated through molecular docking with TLR2 and TLR4 using HDOCK, revealing strong binding interactions. Molecular dynamic simulations confirmed the stability of the vaccine-receptor complexes, while PCA analysis indicated minimal conformational transitions. Immune simulations were conducted using C-ImmSim online software.

RESULTS

This study identified eight OMPs from A. baumannii strain VB7036 as potential immunogenic targets. MEV was designed using five critical B-cell epitopes from four proteins based on their antigenicity, non-allergenicity, and physicochemical properties. This MEV demonstrated strong binding to TLR2 and TLR4, indicating effective immune activation. Molecular dynamics simulations confirmed the structural stability of the MEV-TLR complexes. In silico immune simulations revealed that the MEV induced robust humoral and cell-mediated immune responses, including increased antibody production, T-cell activation, and cytokine release, suggesting the MEV's potential as an effective vaccine candidate for A. baumannii.

CONCLUSION

This study developed an optimized MEV and identified novel drug targets against A. baumannii, providing broad protection against multidrug-resistant A. baumannii strains. MEV demonstrated significant potential due to its favorable physicochemical properties, as confirmed by molecular docking and dynamic simulations. However, more in vitro and in vivo studies are required to verify the drug's effectiveness.

摘要

背景

由于鲍曼不动杆菌(A. baumannii)具有高度抗生素耐药性,世界卫生组织已将其列为关键优先病原体。这种耐药性使治疗变得复杂,并突出了对新抗生素和治疗策略的迫切需求。本研究开发了一种多表位疫苗(MEV)来应对这一重大公共卫生威胁。

方法

本研究采用计算方法设计针对鲍曼不动杆菌VB7036菌株的MEV。使用PSORTb和TMHMM鉴定表面暴露蛋白,随后使用VaxiJen和AlgPred进行抗原性和致敏性预测。使用BepiPred和TepiTool预测线性B细胞表位和MHC-II结合位点,同时用ExPASy ProtParam和Protein-Sol分析理化性质。通过使用HDOCK与TLR2和TLR4进行分子对接来验证MEV构建体,揭示了强烈的结合相互作用。分子动力学模拟证实了疫苗-受体复合物的稳定性,而主成分分析表明构象转变最小。使用C-ImmSim在线软件进行免疫模拟。

结果

本研究确定了鲍曼不动杆菌VB7036菌株的8种外膜蛋白作为潜在的免疫原性靶点。基于其抗原性、非致敏性和理化性质,使用来自四种蛋白质的五个关键B细胞表位设计了MEV。该MEV显示出与TLR2和TLR4的强烈结合,表明有效的免疫激活。分子动力学模拟证实了MEV-TLR复合物的结构稳定性。计算机免疫模拟显示,MEV诱导了强大的体液免疫和细胞介导免疫反应,包括抗体产生增加、T细胞激活和细胞因子释放,表明MEV作为鲍曼不动杆菌有效疫苗候选物的潜力。

结论

本研究开发了一种优化的MEV,并确定了针对鲍曼不动杆菌的新型药物靶点,为多药耐药鲍曼不动杆菌菌株提供了广泛的保护。如分子对接和动力学模拟所证实的,MEV因其良好的理化性质而显示出巨大潜力。然而,需要更多的体外和体内研究来验证该药物的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc36/11892874/3d2d958d75c6/pone.0319191.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验