Suppr超能文献

绝经和年龄对动态对比增强磁共振成像中乳腺密度和背景实质强化的影响。

Impact of menopause and age on breast density and background parenchymal enhancement in dynamic contrast-enhanced magnetic resonance imaging.

作者信息

Kuling Grey, Brooks Jennifer D, Curpen Belinda, Warner Ellen, Martel Anne L

机构信息

University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada.

Blavatnik Institute, Harvard Medical School, Department of Biomedical Informatics, Boston, Massachusetts, United States.

出版信息

J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22002. doi: 10.1117/1.JMI.12.S2.S22002. Epub 2025 Mar 11.

Abstract

PURPOSE

Breast density (BD) and background parenchymal enhancement (BPE) are important imaging biomarkers for breast cancer (BC) risk. We aim to evaluate longitudinal changes in quantitative BD and BPE in high-risk women undergoing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), focusing on the effects of age and transition into menopause.

APPROACH

A retrospective cohort study analyzed 834 high-risk women undergoing breast DCE-MRI for screening between 2005 and 2020. Quantitative BD and BPE were derived using deep-learning segmentation. Linear mixed-effects models assessed longitudinal changes and the effects of age, menopausal status, weeks since the last menstrual period (LMP-wks), body mass index (BMI), and hormone replacement therapy (HRT) on these imaging biomarkers.

RESULTS

BD decreased with age across all menopausal stages, whereas BPE declined with age in postmenopausal women but remained stable in premenopausal women. HRT elevated BPE in postmenopausal women. Perimenopausal women exhibited decreases in both BD and BPE during the menopausal transition, though cross-sectional age at menopause had no significant effect on either measure. Fibroglandular tissue was positively associated with BPE in perimenopausal women.

CONCLUSIONS

We highlight the dynamic impact of menopause on BD and BPE and correlate well with the known relationship between risk and age at menopause. These findings advance the understanding of imaging biomarkers in high-risk populations and may contribute to the development of improved risk assessment leading to personalized chemoprevention and BC screening recommendations.

摘要

目的

乳腺密度(BD)和乳腺实质背景强化(BPE)是乳腺癌(BC)风险的重要影像生物标志物。我们旨在评估接受动态对比增强磁共振成像(DCE-MRI)的高危女性定量BD和BPE的纵向变化,重点关注年龄和进入更年期的影响。

方法

一项回顾性队列研究分析了2005年至2020年间834名接受乳腺DCE-MRI筛查的高危女性。使用深度学习分割得出定量BD和BPE。线性混合效应模型评估这些影像生物标志物的纵向变化以及年龄、绝经状态、末次月经以来的周数(LMP-wks)、体重指数(BMI)和激素替代疗法(HRT)的影响。

结果

在所有绝经阶段,BD均随年龄下降,而BPE在绝经后女性中随年龄下降,但在绝经前女性中保持稳定。HRT使绝经后女性的BPE升高。围绝经期女性在绝经过渡期间BD和BPE均下降,尽管绝经时的横断面年龄对这两项指标均无显著影响。围绝经期女性的纤维腺组织与BPE呈正相关。

结论

我们强调了更年期对BD和BPE的动态影响,并与已知的绝经风险与年龄之间的关系密切相关。这些发现增进了对高危人群影像生物标志物的理解,并可能有助于制定改进的风险评估,从而得出个性化的化学预防和BC筛查建议。

相似文献

1
Impact of menopause and age on breast density and background parenchymal enhancement in dynamic contrast-enhanced magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22002. doi: 10.1117/1.JMI.12.S2.S22002. Epub 2025 Mar 11.
2
Novel Wash-In Characteristics of Background Parenchymal Enhancement on Ultrafast Dynamic Contrast-Enhanced Breast MRI.
AJR Am J Roentgenol. 2025 Jul;225(1):e2432624. doi: 10.2214/AJR.24.32624. Epub 2025 May 23.
3
Long-term hormone therapy for perimenopausal and postmenopausal women.
Cochrane Database Syst Rev. 2017 Jan 17;1(1):CD004143. doi: 10.1002/14651858.CD004143.pub5.
4
Time to Enhancement of Foci Relative to Background Parenchymal Enhancement on Ultrafast Breast MRI: A Single-Center Retrospective Study.
AJR Am J Roentgenol. 2025 Jun;224(6):e2432309. doi: 10.2214/AJR.24.32309. Epub 2025 Jun 25.
5
Hormone replacement therapy for women previously treated for endometrial cancer.
Cochrane Database Syst Rev. 2018 May 15;5(5):CD008830. doi: 10.1002/14651858.CD008830.pub3.
9
The management of menopause in women with a history of endometriosis: a systematic review.
Hum Reprod Update. 2017 Jul 1;23(4):481-500. doi: 10.1093/humupd/dmx011.
10
Specialist breast care nurses for support of women with breast cancer.
Cochrane Database Syst Rev. 2021 Feb 3;2(2):CD005634. doi: 10.1002/14651858.CD005634.pub3.

本文引用的文献

3
BI-RADS BERT and Using Section Segmentation to Understand Radiology Reports.
J Imaging. 2022 May 9;8(5):131. doi: 10.3390/jimaging8050131.
4
Association of breast cancer with MRI background parenchymal enhancement: the IMAGINE case-control study.
Breast Cancer Res. 2020 Dec 7;22(1):138. doi: 10.1186/s13058-020-01375-7.
5
Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models.
J Magn Reson Imaging. 2021 Mar;53(3):818-826. doi: 10.1002/jmri.27429. Epub 2020 Nov 20.
6
Volumetric breast density estimation on MRI using explainable deep learning regression.
Sci Rep. 2020 Oct 22;10(1):18095. doi: 10.1038/s41598-020-75167-6.
7
The Association of Background Parenchymal Enhancement at Breast MRI with Breast Cancer: A Systematic Review and Meta-Analysis.
Radiology. 2019 Sep;292(3):552-561. doi: 10.1148/radiol.2019182441. Epub 2019 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验