Suppr超能文献

用于先进纤维状储能器件的氧化还原聚合物电解质中有机自由基增强的离子导电性

Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices.

作者信息

Kim Jeong-Gil, Ko Jaehyoung, Lim Hyung-Kyu, Jo Yerin, Yu Hayoung, Kim Min Woo, Kim Min Ji, Jeong Hyeon Su, Lee Jinwoo, Joo Yongho, Kim Nam Dong

机构信息

Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Nanomicro Lett. 2025 Mar 13;17(1):185. doi: 10.1007/s40820-025-01700-9.

Abstract

Fiber-shaped energy storage devices (FSESDs) with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation. Among the solid options, polymer electrolytes are particularly preferred due to their robustness and flexibility, although their low ionic conductivity remains a significant challenge. Here, we present a redox polymer electrolyte (HT_RPE) with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HT) as a multi-functional additive. HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species. These synergetic effects lead to high ionic conductivity (73.5 mS cm) based on a lower activation energy of 0.13 eV than other redox additives. Moreover, HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes (energy density of 25.4 W h kg at a power density of 25,000 W kg) without typical active materials, along with excellent stability (capacitance retention of 91.2% after 8,000 bending cycles). This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability, providing a promising pathway for next-generation flexible energy storage devices.

摘要

对于可穿戴电源而言,具有卓越柔韧性的纤维状储能装置(FSESDs)应使用固体电解质而非液体电解质,因为在变形过程中液体电解质存在短路和泄漏问题。在固体电解质选项中,聚合物电解质因其坚固性和柔韧性而特别受青睐,尽管其低离子电导率仍然是一个重大挑战。在此,我们展示了一种氧化还原聚合物电解质(HT_RPE),它以4-羟基-2,2,6,6-四甲基哌啶-1-氧基(HT)作为多功能添加剂。HT充当增塑剂,将玻璃态转变为橡胶态以提高链迁移率,并通过自由基与氧化物种之间的自交换反应提供独特的离子传导途径。这些协同效应基于0.13 eV的较低活化能,导致了高离子电导率(73.5 mS cm),高于其他氧化还原添加剂。此外,具有HT赝电容特性的HT_RPE能够在不使用典型活性材料的情况下,使用碳基纤维电极实现对称FSESDs的出色电化学性能(在功率密度为25,000 W kg时能量密度为25.4 W h kg),同时具有出色的稳定性(在8000次弯曲循环后电容保持率为91.2%)。这项工作突出了一种多功能的HT_RPE,它利用HT的独特功能实现了高离子电导率和改进的储能能力,为下一代柔性储能装置提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f2/11906932/980b6e4bc271/40820_2025_1700_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验