Suppr超能文献

应用机器学习算法探讨噪声与粉尘联合暴露对职业暴露人群听力损失的影响。

Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations.

作者信息

Li Yong, Sun Xin, Qu Yongtao, Yang Shuling, Zhai Yueyi, Qu Yan

机构信息

Department of Otolaryngology, Hebei Medical University, Shijiazhuang, China.

Department of Otolaryngology, Hebei General Hospital, Shijiazhuang, China.

出版信息

Sci Rep. 2025 Mar 17;15(1):9097. doi: 10.1038/s41598-025-93976-5.

Abstract

This study aimed to explore the combined impacts of occupational noise and dust on hearing and extra-auditory functions and identify associated risk factors via machine learning techniques. Data from 14,145 workers (627 with occupational noise-induced hearing loss (ONIHL)) at Hebei Medical Examination Center (2017-2023) were analyzed. Workers with combined exposure and without specific contraindications or other hearing impairment causes were included. Demographic and clinical data were gathered. Chi-square and Mann-Whitney U tests examined variables, and multivariate logistic regression determined ONIHL risk factors. Machine learning algorithms like Logistic Regression and Random Forest were developed, optimized, and evaluated. Results showed significant differences in gender, exposure, blood pressure, smoking, etc. between ONIHL and non-ONIHL groups. Male gender, combined exposure, diastolic blood pressure elevation, smoking, fasting blood glucose elevation, and age were positive predictors, while systolic blood pressure elevation was negative. The logistic model had the highest predictive ability (ROC = 0.714). Subgroup analysis revealed a significant positive correlation in specific subgroups. In summary, combined exposure increased ONIHL risk and affected health. Machine learning effectively predicted ONIHL, but the study had limitations and needed further research.

摘要

本研究旨在探讨职业噪声和粉尘对听力及耳外功能的综合影响,并通过机器学习技术识别相关危险因素。对河北体检中心(2017 - 2023年)14145名工人(627名患有职业性噪声性听力损失(ONIHL))的数据进行了分析。纳入了有联合暴露且无特定禁忌证或其他听力损害原因的工人。收集了人口统计学和临床数据。采用卡方检验和曼 - 惠特尼U检验对变量进行检验,并通过多因素逻辑回归确定ONIHL的危险因素。开发、优化并评估了逻辑回归和随机森林等机器学习算法。结果显示,ONIHL组和非ONIHL组在性别、暴露情况、血压、吸烟等方面存在显著差异。男性、联合暴露、舒张压升高、吸烟、空腹血糖升高和年龄是阳性预测因素,而收缩压升高是阴性预测因素。逻辑模型具有最高的预测能力(ROC = 0.714)。亚组分析显示在特定亚组中有显著的正相关。总之,联合暴露增加了ONIHL风险并影响健康。机器学习有效地预测了ONIHL,但本研究存在局限性,需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae2d/11914654/221654295024/41598_2025_93976_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验