Suppr超能文献

利用先进模拟技术剖析膜转运蛋白中的大规模结构转变

Dissecting Large-Scale Structural Transitions in Membrane Transporters Using Advanced Simulation Technologies.

作者信息

Pant Shashank, Dehghani-Ghahnaviyeh Sepehr, Trebesch Noah, Rasouli Ali, Chen Tianle, Kapoor Karan, Wen Po-Chao, Tajkhorshid Emad

机构信息

Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States.

出版信息

J Phys Chem B. 2025 Apr 17;129(15):3703-3719. doi: 10.1021/acs.jpcb.5c00104. Epub 2025 Mar 18.

Abstract

Membrane transporters are integral membrane proteins that act as gatekeepers of the cell, controlling fundamental processes such as recruitment of nutrients and expulsion of waste material. At a basic level, transporters operate using the "alternating access model," in which transported substances are accessible from only one side of the membrane at a time. This model usually involves large-scale structural changes in the transporter, which often cannot be captured using unbiased, conventional molecular simulation techniques. In this article, we provide an overview of some of the major simulation techniques that have been applied to characterize the structural dynamics and energetics involved in the transition of membrane transporters between their functional states. After briefly introducing each technique, we discuss some of their advantages and limitations and provide some recent examples of their application to membrane transporters.

摘要

膜转运蛋白是整合膜蛋白,充当细胞的守门人,控制着诸如营养物质摄取和废物排出等基本过程。在基本层面上,转运蛋白利用“交替 access 模型”运作,即被转运物质在任何时刻仅能从膜的一侧被接触到。该模型通常涉及转运蛋白的大规模结构变化,而使用无偏差的传统分子模拟技术往往无法捕捉到这些变化。在本文中,我们概述了一些主要的模拟技术,这些技术已被应用于表征膜转运蛋白在其功能状态转变过程中所涉及的结构动力学和能量学。在简要介绍每种技术之后,我们讨论了它们的一些优点和局限性,并提供了它们应用于膜转运蛋白的一些最新实例。

相似文献

1
Dissecting Large-Scale Structural Transitions in Membrane Transporters Using Advanced Simulation Technologies.
J Phys Chem B. 2025 Apr 17;129(15):3703-3719. doi: 10.1021/acs.jpcb.5c00104. Epub 2025 Mar 18.
2
Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation.
Methods Enzymol. 2016;578:373-428. doi: 10.1016/bs.mie.2016.05.042. Epub 2016 Jul 11.
3
Markov state modeling of membrane transport proteins.
J Struct Biol. 2021 Dec;213(4):107800. doi: 10.1016/j.jsb.2021.107800. Epub 2021 Sep 29.
4
Simulation studies of the mechanism of membrane transporters.
Methods Mol Biol. 2013;924:361-405. doi: 10.1007/978-1-62703-017-5_14.
5
Transient formation of water-conducting states in membrane transporters.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7696-701. doi: 10.1073/pnas.1218986110. Epub 2013 Apr 22.
6
Shared Molecular Mechanisms of Membrane Transporters.
Annu Rev Biochem. 2016 Jun 2;85:543-72. doi: 10.1146/annurev-biochem-060815-014520. Epub 2016 Mar 21.
7
Computation and simulation of the structural characteristics of the kidney urea transporter and behaviors of urea transport.
J Phys Chem B. 2015 Apr 23;119(16):5124-31. doi: 10.1021/jp511300u. Epub 2015 Mar 27.
8
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
9
Mechanism of Substrate Translocation in an Alternating Access Transporter.
Cell. 2017 Mar 23;169(1):96-107.e12. doi: 10.1016/j.cell.2017.03.010.
10
Visualizing functional motions of membrane transporters with molecular dynamics simulations.
Biochemistry. 2013 Jan 29;52(4):569-87. doi: 10.1021/bi301086x. Epub 2013 Jan 17.

本文引用的文献

1
Membrane-dependent dynamics and dual translocation mechanisms of ABCB4: Insights from molecular dynamics simulations.
Comput Struct Biotechnol J. 2025 Mar 6;27:1215-1232. doi: 10.1016/j.csbj.2025.03.004. eCollection 2025.
2
Conformational free energy landscape of a glutamate transporter and microscopic details of its transport mechanism.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2416381122. doi: 10.1073/pnas.2416381122. Epub 2025 Mar 5.
3
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
4
Automated collective variable discovery for MFSD2A transporter from molecular dynamics simulations.
Biophys J. 2024 Sep 3;123(17):2934-2955. doi: 10.1016/j.bpj.2024.06.024. Epub 2024 Jun 25.
6
A Gram-negative-selective antibiotic that spares the gut microbiome.
Nature. 2024 Jun;630(8016):429-436. doi: 10.1038/s41586-024-07502-0. Epub 2024 May 29.
8
Molecular mechanisms of Na-driven bile acid transport in human NTCP.
Biophys J. 2024 May 21;123(10):1195-1210. doi: 10.1016/j.bpj.2024.03.033. Epub 2024 Mar 27.
9
Integrative analysis of pathogenic variants in glucose-6-phosphatase based on an AlphaFold2 model.
PNAS Nexus. 2024 Jan 29;3(2):pgae036. doi: 10.1093/pnasnexus/pgae036. eCollection 2024 Feb.
10
Free energy profile of the substrate-induced occlusion of the human serotonin transporter.
J Neurochem. 2024 Sep;168(9):1993-2006. doi: 10.1111/jnc.16061. Epub 2024 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验