Suppr超能文献

一种基于机器学习的方法来辅助学生录取决策。

A Machine-Learning-Based Approach to Informing Student Admission Decisions.

作者信息

Liu Tuo, Schenk Cosima, Braun Stephan, Frey Andreas

机构信息

Institute of Psychology, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany.

出版信息

Behav Sci (Basel). 2025 Mar 7;15(3):330. doi: 10.3390/bs15030330.

Abstract

University resources are limited, and strategic admission management is required in certain fields that have high application volumes but limited available study places. Student admission processes need to select an appropriate number of applicants to ensure the optimal enrollment while avoiding over- or underenrollment. The traditional approach often relies on the enrollment yields from previous years, assuming fixed admission probabilities for all applicants and ignoring statistical uncertainty, which can lead to suboptimal decisions. In this study, we propose a novel machine-learning-based approach to improving student admission decisions. Trained on historical application data, this approach predicts the number of enrolled applicants conditionally based on the number of admitted applicants, incorporates the statistical uncertainty of these predictions, and derives the probability of the number of enrolled applicants being larger or smaller than the available study places. The application of this approach is illustrated using empirical application data from a German university. In this illustration, first, several machine learning models were trained and compared. The best model was selected. This was then applied to applicant data for the next year to estimate the individual enrollment probabilities, which were aggregated to predict the number of applicants enrolled and the probability of this number being larger or smaller than the available study places. When this approach was compared with the traditional approach using fixed enrollment yields, the results showed that the proposed approach enables data-driven adjustments to the number of admitted applicants, ensuring controlled risk of over- and underenrollment.

摘要

大学资源有限,在某些申请人数众多但可用学习名额有限的领域,需要进行战略招生管理。学生录取流程需要挑选出合适数量的申请者,以确保实现最优招生,同时避免招生过多或过少。传统方法通常依赖于前几年的招生率,假定所有申请者的录取概率固定不变,而忽略了统计上的不确定性,这可能导致决策不够优化。在本研究中,我们提出了一种基于机器学习的全新方法来改进学生录取决策。该方法以历史申请数据进行训练,根据已录取申请者的数量有条件地预测入学申请者的数量,纳入这些预测的统计不确定性,并得出入学申请者数量大于或小于可用学习名额的概率。使用一所德国大学的实证申请数据展示了该方法的应用。在这个展示中,首先,训练并比较了几个机器学习模型。选出了最佳模型。然后将其应用于下一年的申请者数据,以估计个体入学概率,这些概率汇总后用于预测入学申请者的数量以及该数量大于或小于可用学习名额的概率。当将这种方法与使用固定招生率的传统方法进行比较时,结果表明所提出的方法能够对已录取申请者的数量进行数据驱动的调整,确保控制招生过多和过少的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec47/11939578/bd62941732d6/behavsci-15-00330-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验