Suppr超能文献

头颈部鳞状细胞癌免疫治疗研究中的多组学:现状与未来展望

Multi-omics in immunotherapy research for HNSCC: present situation and future perspectives.

作者信息

Liu Xuan-Hao, Wang Guang-Rui, Zhong Nian-Nian, Wang Wei-Yu, Liu Bing, Li Zheng, Bu Lin-Lin

机构信息

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.

Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.

出版信息

NPJ Precis Oncol. 2025 Mar 29;9(1):93. doi: 10.1038/s41698-025-00886-w.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, significantly impacting patient survival and quality of life. The recent emergence of immunotherapy has provided new hope for HNSCC patients, improving survival rates; however, only 15%-20% of patients benefit, and side effects are inevitable. With advancements in omics technologies and the growing prevalence of bioinformatics research, the immune microenvironment of HNSCC has become increasingly well understood, and the molecular mechanisms underlying immunotherapy responses continue to be elucidated. In this review, we summarize commonly used omics techniques and their applications in the research of HNSCC immunotherapy, including predicting and enhancing efficacy, formulating personalized treatment plans, establishing robust preclinical research models, and identifying new immunotherapy targets. Finally, we explore future perspective in terms of sequencing samples, data integration analysis, emerging technologies, clinicopathological features, and interdisciplinary approaches.

摘要

头颈部鳞状细胞癌(HNSCC)是全球第六大常见癌症,对患者的生存率和生活质量有重大影响。免疫疗法的近期出现为HNSCC患者带来了新希望,提高了生存率;然而,只有15%-20%的患者受益,且副作用不可避免。随着组学技术的进步和生物信息学研究的日益普及,HNSCC的免疫微环境已得到越来越深入的了解,免疫疗法反应的分子机制也在不断阐明。在本综述中,我们总结了常用的组学技术及其在HNSCC免疫疗法研究中的应用,包括预测和提高疗效、制定个性化治疗方案、建立可靠的临床前研究模型以及确定新的免疫疗法靶点。最后,我们从测序样本、数据整合分析、新兴技术、临床病理特征和跨学科方法等方面探讨了未来的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c7/11954913/93811fcaee5a/41698_2025_886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验