Alshahrani Mohammed, Parikh Vedant, Foley Brandon, Hu Guang, Verkhivker Gennady
bioRxiv. 2025 Mar 14:2025.03.11.642708. doi: 10.1101/2025.03.11.642708.
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
KRAS是一种历史上“不可成药”的致癌驱动因子,由于其在活性状态下缺乏可及的结合口袋,一直难以进行靶向治疗。本研究调查了KRAS与单域抗体(12D1、12D5)和亲和体蛋白(K6、K3、K69)形成复合物时的构象动力学、结合机制和变构通讯网络,以表征KRAS的结合和变构机制以及KRAS结合的热点。通过分子动力学模拟、突变扫描、结合自由能分析和基于网络的分析,我们确定了保守的变构热点,这些热点是KRAS中远程通讯的关键节点。β链4(F78、L80、F82)、α螺旋3(I93、H95、Y96)、β链5(V114、N116)和α螺旋5(Y157、L159、R164)中的关键残基在不同的结合伙伴中始终作为热点出现,形成连接KRAS功能区域的连续网络。值得注意的是,β链4作为传播构象变化的中心枢纽,而以临床批准的抑制剂靶向的H95/Y96位置为中心的隐秘变构口袋被确定为结合和变构的通用热点。该研究还揭示了结构刚性和功能灵活性之间的相互作用,其中一个区域的稳定会在其他区域诱导补偿性灵活性,反映了KRAS对扰动的适应性。我们发现单域抗体稳定了KRAS的开关II区域,破坏了开关I和II区域之间的偶联,并导致KRAS开关I中的流动性增强。同样,亲和体K3利用α3螺旋作为铰链点来放大其对KRAS动力学的影响。突变扫描和结合自由能分析突出了KRAS相互作用的能量驱动因素,揭示了关键的热点残基,包括α3螺旋中的H95和Y96,是结合亲和力和选择性的主要贡献者。网络分析确定β链4是传播构象变化的中心枢纽,连接遥远的功能位点。预测的变构热点与实验数据高度一致,验证了计算方法的稳健性。尽管结合界面不同,但共享的热点突出了保守的变构结构,强化了它们在KRAS信号传导中的普遍重要性。本研究结果可为模仿单域抗体和亲和体蛋白作用的小分子抑制剂的合理设计提供信息,挑战KRAS“不可成药”的声誉。