Suppr超能文献

Seed2LP:用于逆向生态学应用的代谢网络种子推断

Seed2LP: seed inference in metabolic networks for reverse ecology applications.

作者信息

Ghassemi Nedjad Chabname, Bolteau Mathieu, Bourneuf Lucas, Paulevé Loïc, Frioux Clémence

机构信息

University of Bordeaux, CNRS, BordeauxINP, LaBRI, UMR 5800, Talence F-33400, France.

Inria, University of Bordeaux, INRAE, Talence F-33400, France.

出版信息

Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf140.

Abstract

MOTIVATION

A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster an increasing amount of genomic sequences that can be explored with reverse ecology approaches to raise hypotheses on the corresponding populations. Building upon genome-scale metabolic networks (GSMNs) obtained from genome annotations, metabolic models predict contextualized phenotypes using nutrient information.

RESULTS

We developed the tool Seed2LP, addressing the inverse problem of predicting source nutrients, or seeds, from a GSMN and a metabolic objective. The originality of Seed2LP is its hybrid model, combining a scalable and discrete Boolean approximation of metabolic activity, with the numerically accurate flux balance analysis (FBA). Seed inference is highly customizable, with multiple search and solving modes, exploring the search space of external and internal metabolites combinations. Application to a benchmark of 107 curated GSMNs highlights the usefulness of a logic modelling method over a graph-based approach to predict seeds, and the relevance of hybrid solving to satisfy FBA constraints. Focusing on the dependency between metabolism and environment, Seed2LP is a computational support contributing to address the multifactorial challenge of culturing possibly uncultured microorganisms.

AVAILABILITY AND IMPLEMENTATION

Seed2LP is available on https://github.com/bioasp/seed2lp.

摘要

动机

微生物学中的一个具有挑战性的问题是确定微生物的营养需求并对其进行培养,特别是对于仅通过非培养方法检测到的微生物暗物质。后者产生了越来越多的基因组序列,这些序列可以通过逆向生态学方法进行探索,以对相应的种群提出假设。基于从基因组注释中获得的基因组规模代谢网络(GSMN),代谢模型利用营养信息预测情境化表型。

结果

我们开发了工具Seed2LP,用于解决从GSMN和代谢目标预测源营养物质(即种子)的逆问题。Seed2LP的独特之处在于其混合模型,它将代谢活性的可扩展离散布尔近似与数值精确的通量平衡分析(FBA)相结合。种子推断具有高度可定制性,具有多种搜索和求解模式,可探索外部和内部代谢物组合的搜索空间。应用于107个经过整理的GSMN基准测试突出了逻辑建模方法相对于基于图的方法在预测种子方面的有用性,以及混合求解以满足FBA约束的相关性。专注于代谢与环境之间的依赖性,Seed2LP是一种计算支持,有助于应对培养可能未培养微生物的多因素挑战。

可用性和实现方式

Seed2LP可在https://github.com/bioasp/seed2lp上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1b/12007882/9f8f7eb92c31/btaf140f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验