Suppr超能文献

Peptidy:一个用于机器学习中肽表示的轻量级Python库。

peptidy: a light-weight Python library for peptide representation in machine learning.

作者信息

Özçelik Rıza, van Weesep Laura, de Ruiter Sarah, Grisoni Francesca

机构信息

Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612AZ, Netherlands.

Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrech, Utrecht 3584CB, Netherlands.

出版信息

Bioinform Adv. 2025 Mar 21;5(1):vbaf058. doi: 10.1093/bioadv/vbaf058. eCollection 2025.

Abstract

MOTIVATION

Peptides are widely used in applications ranging from drug discovery to food technologies. Machine learning has become increasingly prominent in accelerating the search for new peptides, and user-friendly computational tools can further enhance these efforts.

RESULTS

In this work, we introduce peptidy-a lightweight Python library that facilitates converting peptides (expressed as amino acid sequences) to numerical representations suited to machine learning. peptidy is free from external dependencies, integrates seamlessly into modern Python environments, and supports a range of encoding strategies suitable for both predictive and generative machine learning approaches. Additionally, peptidy supports peptides with post-translational modifications, such as phosphorylation, acetylation, and methylation, thereby extending the functionality of existing Python packages for peptides and proteins.

AVAILABILITY AND IMPLEMENTATION

peptidy is freely available with a permissive license on GitHub at the following URL: https://github.com/molML/peptidy.

摘要

动机

肽广泛应用于从药物发现到食品技术等诸多领域。机器学习在加速新型肽的搜索方面变得越来越重要,而用户友好的计算工具可以进一步推动这些工作。

结果

在这项工作中,我们介绍了peptidy——一个轻量级的Python库,它有助于将肽(表示为氨基酸序列)转换为适合机器学习的数值表示形式。peptidy没有外部依赖项,能无缝集成到现代Python环境中,并支持一系列适用于预测性和生成性机器学习方法的编码策略。此外,peptidy支持具有翻译后修饰(如磷酸化、乙酰化和甲基化)的肽,从而扩展了现有用于肽和蛋白质的Python软件包的功能。

可用性和实现方式

peptidy可在GitHub上以宽松许可免费获取,网址如下:https://github.com/molML/peptidy

相似文献

1
peptidy: a light-weight Python library for peptide representation in machine learning.
Bioinform Adv. 2025 Mar 21;5(1):vbaf058. doi: 10.1093/bioadv/vbaf058. eCollection 2025.
2
Poincaré and SimBio: a versatile and extensible Python ecosystem for modeling systems.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae465.
3
iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences.
Bioinformatics. 2018 Jul 15;34(14):2499-2502. doi: 10.1093/bioinformatics/bty140.
5
HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
J Bioinform Comput Biol. 2021 Oct;19(5):2150021. doi: 10.1142/S0219720021500219. Epub 2021 Aug 5.
6
Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching.
J Proteome Res. 2023 Feb 3;22(2):585-593. doi: 10.1021/acs.jproteome.2c00616. Epub 2023 Jan 23.
7
SimService: a lightweight library for building simulation services in Python.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btae009.
8
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.
9
AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge.
Bioinformatics. 2022 Jan 12;38(3):849-852. doi: 10.1093/bioinformatics/btab674.
10
CompactTree: a lightweight header-only C++ library and Python wrapper for ultra-large phylogenetics.
GigaByte. 2025 Mar 7;2025:gigabyte152. doi: 10.46471/gigabyte.152. eCollection 2025.

引用本文的文献

1
Identifying 14-3-3 interactome binding sites with deep learning.
Digit Discov. 2025 Aug 8. doi: 10.1039/d5dd00132c.

本文引用的文献

1
A hitchhiker's guide to deep chemical language processing for bioactivity prediction.
Digit Discov. 2024 Dec 16;4(2):316-325. doi: 10.1039/d4dd00311j. eCollection 2025 Feb 12.
2
A systematic review on the state-of-the-art strategies for protein representation.
Comput Biol Med. 2023 Jan;152:106440. doi: 10.1016/j.compbiomed.2022.106440. Epub 2022 Dec 17.
3
Peptide-based drug discovery: Current status and recent advances.
Drug Discov Today. 2023 Feb;28(2):103464. doi: 10.1016/j.drudis.2022.103464. Epub 2022 Dec 5.
5
Amino acid encoding for deep learning applications.
BMC Bioinformatics. 2020 Jun 9;21(1):235. doi: 10.1186/s12859-020-03546-x.
6
De novo design of anticancer peptides by ensemble artificial neural networks.
J Mol Model. 2019 Apr 5;25(5):112. doi: 10.1007/s00894-019-4007-6.
7
Designing Anticancer Peptides by Constructive Machine Learning.
ChemMedChem. 2018 Jul 6;13(13):1300-1302. doi: 10.1002/cmdc.201800204. Epub 2018 May 29.
8
Deep learning improves antimicrobial peptide recognition.
Bioinformatics. 2018 Aug 15;34(16):2740-2747. doi: 10.1093/bioinformatics/bty179.
9
Machine learning-enabled discovery and design of membrane-active peptides.
Bioorg Med Chem. 2018 Jun 1;26(10):2708-2718. doi: 10.1016/j.bmc.2017.07.012. Epub 2017 Jul 8.
10
modlAMP: Python for antimicrobial peptides.
Bioinformatics. 2017 Sep 1;33(17):2753-2755. doi: 10.1093/bioinformatics/btx285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验