Suppr超能文献

遗传关联分析中本地祖先的机遇与挑战。

Opportunities and challenges of local ancestry in genetic association analyses.

作者信息

Sun Quan, Horimoto Andrea R V R, Chen Brian, Ockerman Frank, Mohlke Karen L, Blue Elizabeth, Raffield Laura M, Li Yun

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Am J Hum Genet. 2025 Apr 3;112(4):727-740. doi: 10.1016/j.ajhg.2025.03.004.

Abstract

Recently, admixed populations make up an increasing percentage of the US and global populations, and the admixture is not uniform over space or time or across genomes. Therefore, it becomes indispensable to evaluate local ancestry in addition to global ancestry to improve genetic epidemiological studies. Recent advances in representing human genome diversity, coupled with large-scale whole-genome sequencing initiatives and improved tools for local ancestry inference, have enabled studies to demonstrate that incorporating local ancestry information enhances both genetic association analyses and polygenic risk predictions. Along with the opportunities that local ancestry provides, there exist challenges preventing its full usage in genetic analyses. In this review, we first summarize methods for local ancestry inference and illustrate how local ancestry can be utilized in various analyses, including admixture mapping, association testing, and polygenic risk score construction. In addition, we discuss current challenges in research involving local ancestry, both in terms of the inference itself and its role in genetic association studies. We further pinpoint some future study directions and methodology development opportunities to help more effectively incorporate local ancestry in genetic analyses. It is worth the effort to pursue those future directions and address these analytical challenges because the appropriate use of local ancestry estimates could help mitigate inequality in genomic medicine and improve our understanding of health and disease outcomes.

摘要

近年来,混合群体在美国和全球人口中所占的比例越来越大,而且这种混合在空间、时间或整个基因组上并不均匀。因此,除了评估全基因组祖源外,评估局部祖源对于改进遗传流行病学研究变得不可或缺。在表示人类基因组多样性方面的最新进展,加上大规模全基因组测序计划以及用于局部祖源推断的改进工具,使得研究能够证明纳入局部祖源信息可增强遗传关联分析和多基因风险预测。伴随着局部祖源带来的机遇,也存在一些阻碍其在遗传分析中充分应用的挑战。在这篇综述中,我们首先总结局部祖源推断的方法,并说明局部祖源如何用于各种分析,包括混合映射、关联测试和多基因风险评分构建。此外,我们讨论了涉及局部祖源的研究当前面临的挑战,包括推断本身及其在遗传关联研究中的作用。我们进一步指出一些未来的研究方向和方法开发机会,以帮助更有效地将局部祖源纳入遗传分析。努力探索这些未来方向并应对这些分析挑战是值得的,因为适当地使用局部祖源估计有助于减轻基因组医学中的不平等现象,并增进我们对健康和疾病结果的理解。

相似文献

1
Opportunities and challenges of local ancestry in genetic association analyses.
Am J Hum Genet. 2025 Apr 3;112(4):727-740. doi: 10.1016/j.ajhg.2025.03.004.
3
Local and global ancestry inference and applications to genetic association analysis for admixed populations.
Genet Epidemiol. 2014 Sep;38 Suppl 1(0 1):S5-S12. doi: 10.1002/gepi.21819.
4
Variable prediction accuracy of polygenic scores within an ancestry group.
Elife. 2020 Jan 30;9:e48376. doi: 10.7554/eLife.48376.
6
Putting RFMix and ADMIXTURE to the test in a complex admixed population.
BMC Genet. 2020 Apr 7;21(1):40. doi: 10.1186/s12863-020-00845-3.
7
A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.
PLoS One. 2016 Mar 11;11(3):e0151047. doi: 10.1371/journal.pone.0151047. eCollection 2016.
10
The role of local ancestry adjustment in association studies using admixed populations.
Genet Epidemiol. 2014 Sep;38(6):502-15. doi: 10.1002/gepi.21835. Epub 2014 Jul 15.

引用本文的文献

1
An Efficient Lasso Framework for Admixture-Aware Polygenic Scores.
bioRxiv. 2025 Aug 27:2025.08.26.671106. doi: 10.1101/2025.08.26.671106.
2
Data simulation to optimize frameworks for genome-wide association studies in diverse populations.
Front Genet. 2025 Jun 18;16:1559496. doi: 10.3389/fgene.2025.1559496. eCollection 2025.

本文引用的文献

1
Characterizing features affecting local ancestry inference performance in admixed populations.
Am J Hum Genet. 2025 Feb 6;112(2):224-234. doi: 10.1016/j.ajhg.2024.12.005. Epub 2025 Jan 2.
2
Genome-wide association analysis and admixture mapping in a Puerto Rican cohort supports an Alzheimer disease risk locus on chromosome 12.
Front Aging Neurosci. 2024 Sep 4;16:1459796. doi: 10.3389/fnagi.2024.1459796. eCollection 2024.
3
Joint genotype and ancestry analysis identify novel loci associated with atopic dermatitis in African American population.
HGG Adv. 2024 Oct 10;5(4):100350. doi: 10.1016/j.xhgg.2024.100350. Epub 2024 Sep 7.
5
Global and Local Ancestry and its Importance: A Review.
Curr Genomics. 2024;25(4):237-260. doi: 10.2174/0113892029298909240426094055. Epub 2024 May 9.
7
Admixture Mapping of Chronic Kidney Disease and Risk Factors in Hispanic/Latino Individuals From Central America Country of Origin.
Circ Genom Precis Med. 2024 Aug;17(4):e004314. doi: 10.1161/CIRCGEN.123.004314. Epub 2024 Jul 1.
8
Assessing the limits of local ancestry inference from small reference panels.
Mol Ecol Resour. 2024 Aug;24(6):e13981. doi: 10.1111/1755-0998.13981. Epub 2024 May 22.
9
A harmonized public resource of deeply sequenced diverse human genomes.
Genome Res. 2024 Jun 25;34(5):796-809. doi: 10.1101/gr.278378.123.
10
MagicalRsq-X: A cross-cohort transferable genotype imputation quality metric.
Am J Hum Genet. 2024 May 2;111(5):990-995. doi: 10.1016/j.ajhg.2024.04.001. Epub 2024 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验