Kaur Ekjot, Acharya Vishal
Artificial Intelligence for Computational Biology (AICoB) Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Arch Microbiol. 2025 Apr 6;207(5):115. doi: 10.1007/s00203-025-04312-4.
A prevalent pathobiont, Candida albicans, accounts for approximately 70% of fungal infections worldwide owing to its virulence traits that culminate in devastating fatalities within healthcare facilities. Protein-protein interactions (PPIs) between Homo sapiens and C. albicans play a pivotal role in infection and disease progression. Additionally, scarcity of information on H. sapiens-C. albicans protein-protein interactions makes it difficult to understand the molecular mechanisms underlying infection and host immune responses. Investigating these PPIs can provide crucial insights into host-pathogen relationships and facilitate the development of novel therapeutic interventions. To address this challenge, we utilized computational techniques based on homology and domain to project 56,515 human-fungal pathogen protein-protein interactions (HF-PPIs) involving 6830 human and 486 C. albicans proteins. We have identified 16 key virulence factors of C. albicans, including SOD1, ERG10, GFA1, and VPS4, as potential therapeutic targets. As evidenced by dual RNA-Seq data acquired at various stages of infection such as 15, 30, 60, 120, and 240 min, these fungal genes interact with down-regulated human immunomodulatory genes specifically, ADRM1, DAXX, RYBP, SGTA, and SRGN. In addition to their intrinsically disordered regions, these human genes are particularly susceptible to fungal manipulation. Through the identification of experimentally validated virulence factors and their interaction partners, this investigation constructs HF-PPI between H. sapiens and C. albicans. Our knowledge of human-fungal pathogen protein-protein interactions will be improved by integrating computational and experimental data in order to facilitate the development of efficient fungal infection prevention and treatment protocols.
一种常见的病理共生菌——白色念珠菌,因其毒力特性导致医疗设施内出现毁灭性的死亡病例,在全球约70%的真菌感染中占主导地位。人类与白色念珠菌之间的蛋白质-蛋白质相互作用(PPI)在感染和疾病进展中起着关键作用。此外,关于人类与白色念珠菌蛋白质-蛋白质相互作用的信息匮乏,使得难以理解感染和宿主免疫反应背后的分子机制。研究这些PPI可以为宿主-病原体关系提供关键见解,并促进新型治疗干预措施的开发。为应对这一挑战,我们利用基于同源性和结构域的计算技术,预测了涉及6830个人类蛋白和486个白色念珠菌蛋白的56515种人类-真菌病原体蛋白质-蛋白质相互作用(HF-PPI)。我们已确定白色念珠菌的16个关键毒力因子,包括超氧化物歧化酶1(SOD1)、烯酰辅酶A还原酶10(ERG10)、谷氨酰胺合成酶1(GFA1)和液泡蛋白分选蛋白4(VPS4),作为潜在的治疗靶点。如在感染的15、30、60、120和240分钟等不同阶段获取的双RNA测序数据所示,这些真菌基因与下调的人类免疫调节基因——特别是泛素蛋白连接酶E3A(ADRM1)、死亡结构域相关蛋白(DAXX)、RING1和YY1结合蛋白(RYBP)、小谷氨酰胺转胺酶样蛋白(SGTA)和分泌型卷曲相关蛋白(SRGN)——特异性相互作用。除了其固有无序区域外,这些人类基因特别容易受到真菌的操纵。通过鉴定经过实验验证的毒力因子及其相互作用伙伴,本研究构建了人类与白色念珠菌之间的HF-PPI。通过整合计算和实验数据,我们对人类-真菌病原体蛋白质-蛋白质相互作用的认识将得到提高,以便促进高效的真菌感染预防和治疗方案的开发。