Suppr超能文献

将工程化TCR控制的模糊逻辑引入嵌合抗原受体T细胞可增强治疗特异性。

Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity.

作者信息

Kondo Taisuke, Bourassa François X P, Achar Sooraj, DuSold Justyn, Céspedes Pablo F, Ando Makoto, Dwivedi Alka, Moraly Josquin, Chien Christopher, Majdoul Saliha, Kenet Adam L, Wahlsten Madison, Kvalvaag Audun, Jenkins Edward, Kim Sanghyun P, Ade Catherine M, Yu Zhiya, Gaud Guillaume, Davila Marco, Love Paul, Yang James C, Dustin Michael L, Altan-Bonnet Grégoire, François Paul, Taylor Naomi

机构信息

Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.

出版信息

Cell. 2025 May 1;188(9):2372-2389.e35. doi: 10.1016/j.cell.2025.03.017. Epub 2025 Apr 11.

Abstract

Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHAT/p53) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.

摘要

嵌合抗原受体(CAR)T细胞免疫疗法是血液系统恶性肿瘤治疗的一项突破,但特异性较差限制了其在实体瘤治疗中的应用。相比之下,携带T细胞受体(TCR)的天然T细胞能够区分表达新抗原的癌细胞和表达自身抗原的健康组织,但对肿瘤的效力有限。我们使用了一个高通量平台,系统地评估在同一CAR T细胞中共表达TCR和CAR的影响。虽然强烈的TCR-抗原相互作用增强了CAR的激活,但弱的TCR-抗原相互作用却积极拮抗它们的激活。数学建模捕捉到了CAR T细胞中这种TCR-CAR串扰,使我们能够设计分别靶向新抗原(HHAT/p53)和人表皮生长因子受体2(HER2)配体的双TCR/CAR T细胞。在人源化实体瘤小鼠模型中,与传统CAR T细胞相比,这些T细胞表现出卓越的抗癌活性,对健康组织的毒性最小。因此,利用受体之间预先存在的抑制性串扰,为设计更精确的癌症免疫疗法铺平了道路。

相似文献

1
Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity.
Cell. 2025 May 1;188(9):2372-2389.e35. doi: 10.1016/j.cell.2025.03.017. Epub 2025 Apr 11.
2
TCR-mimicking STAR conveys superior sensitivity over CAR in targeting tumors with low-density neoantigens.
Cell Rep. 2024 Nov 26;43(11):114949. doi: 10.1016/j.celrep.2024.114949. Epub 2024 Nov 8.
3
TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity.
Mol Ther. 2024 Nov 6;32(11):3915-3931. doi: 10.1016/j.ymthe.2024.08.018. Epub 2024 Aug 21.
5
Generation of chimeric antigen receptor T cells targeting p95HER2 in solid tumors.
Nat Commun. 2024 Nov 18;15(1):9589. doi: 10.1038/s41467-024-53265-7.
6
T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance.
Immunol Rev. 2019 Jul;290(1):127-147. doi: 10.1111/imr.12772.
8
Single-Domain Antibody-Based TCR-Like CAR-T: A Potential Cancer Therapy.
J Immunol Res. 2020 Sep 7;2020:2454907. doi: 10.1155/2020/2454907. eCollection 2020.
10
Engineering CAR-T Cells for Next-Generation Cancer Therapy.
Cancer Cell. 2020 Oct 12;38(4):473-488. doi: 10.1016/j.ccell.2020.07.005. Epub 2020 Jul 30.

引用本文的文献

本文引用的文献

1
Engineering synthetic suppressor T cells that execute locally targeted immunoprotective programs.
Science. 2024 Dec 6;386(6726):eadl4793. doi: 10.1126/science.adl4793.
3
CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides.
Nat Immunol. 2023 Dec;24(12):2121-2134. doi: 10.1038/s41590-023-01663-2. Epub 2023 Nov 9.
4
Cooperative CAR targeting to selectively eliminate AML and minimize escape.
Cancer Cell. 2023 Nov 13;41(11):1871-1891.e6. doi: 10.1016/j.ccell.2023.09.010. Epub 2023 Oct 5.
5
Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells.
Mol Ther. 2023 Aug 2;31(8):2309-2325. doi: 10.1016/j.ymthe.2023.06.006. Epub 2023 Jun 12.
6
Programming CAR T Cell Tumor Recognition: Tuned Antigen Sensing and Logic Gating.
Cancer Discov. 2023 Apr 3;13(4):829-843. doi: 10.1158/2159-8290.CD-23-0101.
7
Co-opting signalling molecules enables logic-gated control of CAR T cells.
Nature. 2023 Mar;615(7952):507-516. doi: 10.1038/s41586-023-05778-2. Epub 2023 Mar 8.
8
The ectonucleotidase CD39 identifies tumor-reactive CD8 T cells predictive of immune checkpoint blockade efficacy in human lung cancer.
Immunity. 2023 Jan 10;56(1):93-106.e6. doi: 10.1016/j.immuni.2022.12.001. Epub 2022 Dec 26.
9
Synthetic cytokine circuits that drive T cells into immune-excluded tumors.
Science. 2022 Dec 16;378(6625):eaba1624. doi: 10.1126/science.aba1624.
10
Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning.
Science. 2022 Dec 16;378(6625):1194-1200. doi: 10.1126/science.abq0225. Epub 2022 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验