Suppr超能文献

评估药物向人乳转移的机器学习方法。

Machine learning approaches for assessing medication transfer to human breast milk.

作者信息

Zhao Zhongyuan, Zou Peng, Fang Yuan, Si Tong, Li Yanyan, Yi Bofang, Zhang Tao

机构信息

School of Pharmacy and Pharmaceutical Sciences, SUNY-Binghamton University, PO Box 6000, Binghamton, NY, 13902, USA.

Department of Mathematics and Statistics, SUNY-Binghamton University, PO Box 6000, Binghamton, NY, 13902, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2025 Apr 16;52(3):25. doi: 10.1007/s10928-025-09972-9.

Abstract

The human milk/plasma (M/P) drug concentration ratio is crucial in pharmacology, especially for breastfeeding mothers undergoing treatment. It determines the extent to which drugs ingested by the mother pass into breast milk, potentially affecting the infant. This study conducted a comprehensive evaluation of multiple machine learning algorithms to assess their effectiveness in predicting the M/P ratio. The dataset consists of 162 drugs and 11 predictor variables. M/P ratios were categorized into two groups of (0, 1) and (≥ 1), and a refined three-category system: (0, < 0.5), (0.5, < 1), and (≥ 1). The ML techniques utilized include K-Nearest Neighbors (KNN), Random Forest, Support Vector Machine (SVM), and Neural Networks. We implied the five-fold cross-validation to ensure the model's robustness and Principal Component Analysis (PCA) was applied for data visualization. Bayesian Information Criterion (BIC) was used in the KNN model selection to balance complexity and explanatory power. In our study, KNN achieved average accuracies of 79% for the two-category system and 60% for the three-category. Random Forest models show 77 and 64% average accuracy, respectively. SVM achieved similar results with 78 and 67%, while Neural Networks have the overall best result among the other models with average accuracies of 82 and 76% accuracy. The study highlights the potential of machine learning (ML) techniques in predicting M/P ratios, offering valuable insights for risk assessment during drug development. These predictive models can serve as a valuable tool for estimating drug transfer into breast milk, helping to bridge knowledge gaps in drug safety for lactating individuals. Further validation and refinement by incorporating larger datasets can enhance their reliability and applicability. Advancing these techniques can support safer medication use and informed clinical decision-making for lactating individuals.

摘要

人乳/血浆(M/P)药物浓度比在药理学中至关重要,尤其对于正在接受治疗的哺乳期母亲而言。它决定了母亲摄入的药物进入母乳的程度,可能会影响婴儿。本研究对多种机器学习算法进行了全面评估,以评估它们在预测M/P比方面的有效性。数据集包含162种药物和11个预测变量。M/P比被分为两组:(0,1)和(≥1),以及一个细化的三类系统:(0,<0.5)、(0.5,<1)和(≥1)。所使用的机器学习技术包括K近邻(KNN)、随机森林、支持向量机(SVM)和神经网络。我们采用五折交叉验证来确保模型的稳健性,并应用主成分分析(PCA)进行数据可视化。在KNN模型选择中使用贝叶斯信息准则(BIC)来平衡复杂性和解释力。在我们的研究中,对于两类系统,KNN的平均准确率为79%,对于三类系统为60%。随机森林模型的平均准确率分别为77%和64%。支持向量机的结果类似,分别为78%和67%,而神经网络在其他模型中总体表现最佳,平均准确率为82%和76%。该研究突出了机器学习(ML)技术在预测M/P比方面的潜力,为药物开发过程中的风险评估提供了有价值的见解。这些预测模型可作为估计药物向母乳中转移的宝贵工具,有助于填补哺乳期个体药物安全性方面的知识空白。通过纳入更大的数据集进行进一步验证和完善,可以提高其可靠性和适用性。推进这些技术可以支持哺乳期个体更安全地用药和做出明智的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验