Suppr超能文献

中尺度全脑波动分析:揭示氯胺酮在多个脑区的快速抗抑郁作用。

Mesoscale brain-wide fluctuation analysis: revealing ketamine's rapid antidepressant across multiple brain regions.

作者信息

Cao Qingying, Xu Xiaojun, Wang Xinyu, He Fengkai, Lin Yichao, Guo Dongyong, Bai Wenwen, Guo Baolin, Zheng Xuyuan, Liu Tiaotiao

机构信息

School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.

Bioland Laboratory, Guangdong Province, Guangzhou, China.

出版信息

Transl Psychiatry. 2025 Apr 19;15(1):155. doi: 10.1038/s41398-025-03375-7.

Abstract

Depression has been linked to cortico-limbic brain regions, and ketamine is known for its rapid antidepressant effects. However, how these brain regions encode depression collaboratively and how ketamine regulates these regions to exert its prompt antidepressant effects through mesoscale brain-wide fluctuations remain elusive. In this study, we used a multidisciplinary approach, including multi-region in vivo recordings in mice, chronic social defeat stress (CSDS), and machine learning, to construct a Mesoscale Brain-Wide Fluctuation Analysis platform (MBFA-platform). This platform analyzes the mesoscale brain-wide fluctuations of multiple brain regions from the perspective of local field potential oscillations and network dynamics. The decoder results demonstrate that our MBFA platform can accurately classify the Control/CSDS and ketamine/saline-treated groups based on neural oscillation and network activities among the eight brain regions. We found that multiple-region LFPs patterns are disrupted in CSDS-induced social avoidance, with the basolateral amygdala playing a key role. Ketamine primarily exerts the compensatory effects through network dynamics, contributing to its rapid antidepressant effect. These findings highlight the MBFA platform as an interdisciplinary tool for revealing mesoscale brain-wide fluctuations underlying complex emotional pathologies, providing insights into the etiology of psychiatry. Furthermore, the platform's evaluation capabilities present a novel approach for psychiatric therapeutic interventions.

摘要

抑郁症与皮质-边缘脑区有关,而氯胺酮以其快速的抗抑郁作用而闻名。然而,这些脑区如何协同编码抑郁症,以及氯胺酮如何通过中尺度全脑波动调节这些区域以发挥其快速抗抑郁作用,仍然不清楚。在这项研究中,我们采用了多学科方法,包括对小鼠进行多区域活体记录、慢性社会挫败应激(CSDS)和机器学习,来构建一个中尺度全脑波动分析平台(MBFA平台)。该平台从局部场电位振荡和网络动力学的角度分析多个脑区的中尺度全脑波动。解码器结果表明,我们的MBFA平台可以根据八个脑区之间的神经振荡和网络活动,准确地对对照组/CSDS组以及氯胺酮/生理盐水处理组进行分类。我们发现,在CSDS诱导的社交回避中,多区域局部场电位模式受到破坏,基底外侧杏仁核起着关键作用。氯胺酮主要通过网络动力学发挥补偿作用,这有助于其快速抗抑郁作用。这些发现突出了MBFA平台作为一种跨学科工具,用于揭示复杂情绪病理学背后的中尺度全脑波动,为精神病学的病因学提供了见解。此外,该平台的评估能力为精神治疗干预提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/615d/12009331/e910c928230b/41398_2025_3375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验