Suppr超能文献

NEMF介导的CAT加尾促进易位相关的质量控制。

NEMF-mediated CAT tailing facilitates translocation-associated quality control.

作者信息

Ennis Amanda, Wang Lihui, Xu Yue, Saidi Layla, Wang Xiaorong, Yu Clinton, Yun Sijung, Huang Lan, Ye Yihong

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA.

出版信息

J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202408199. Epub 2025 Apr 21.

Abstract

Ribosome stalling during co-translational translocation at the ER causes translocon clogging and impairs ER protein biogenesis. Mammalian cells resolve translocon clogging via a poorly characterized translocation-associated quality control (TAQC) process. Here, we combine a genome-wide CRISPR screen with live-cell imaging to dissect the molecular linchpin of TAQC. We show that TAQC substrates translated from mRNAs bearing a ribosome-stalling poly(A) sequence are degraded by lysosomes and the proteasome. By contrast, the degradation of defective nascent chains encoded by nonstop (NS) mRNAs involves an unconventional ER-associated protein degradation (ERAD) mechanism depending on ER-to-Golgi trafficking, KDEL-mediated substrate retrieval at the Golgi, and a tRNA-binding factor NEMF that appends an aggregation-prone carboxyl tail to stalled NS nascent chains. We propose that NEMF-mediated CAT tailing targets a subset of TAQC substrates via Golgi retrieval for ERAD, safeguarding ER homeostasis.

摘要

核糖体在内质网(ER)共翻译转运过程中发生停滞会导致转运体堵塞,并损害内质网蛋白质生物合成。哺乳动物细胞通过一个特征不明的转运相关质量控制(TAQC)过程来解决转运体堵塞问题。在这里,我们将全基因组CRISPR筛选与活细胞成像相结合,以剖析TAQC的分子关键环节。我们发现,从带有核糖体停滞多聚腺苷酸(poly(A))序列的mRNA翻译而来的TAQC底物会被溶酶体和蛋白酶体降解。相比之下,由无义(NS)mRNA编码的有缺陷新生链的降解涉及一种非常规的内质网相关蛋白降解(ERAD)机制,该机制依赖于内质网到高尔基体的运输、高尔基体处KDEL介导的底物回收,以及一个tRNA结合因子NEMF,它会在停滞的NS新生链上附加一个易于聚集的羧基末端。我们提出,NEMF介导的CAT加尾通过高尔基体回收将一部分TAQC底物靶向进行ERAD,从而维护内质网稳态。

相似文献

1
NEMF-mediated CAT tailing facilitates translocation-associated quality control.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202408199. Epub 2025 Apr 21.
2
NEMF-mediated CAT-tailing defines distinct branches of translocation-associated quality control.
bioRxiv. 2024 Aug 28:2024.08.27.610005. doi: 10.1101/2024.08.27.610005.
3
SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum.
Cell Rep. 2023 Jan 31;42(1):112028. doi: 10.1016/j.celrep.2023.112028. Epub 2023 Jan 23.
4
UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis.
Cell Res. 2020 Jan;30(1):5-20. doi: 10.1038/s41422-019-0236-6. Epub 2019 Oct 8.
5
BiP/GRP78 Mediates ERAD Targeting of Proteins Produced by Membrane-Bound Ribosomes Stalled at the STOP-Codon.
J Mol Biol. 2019 Jan 18;431(2):123-141. doi: 10.1016/j.jmb.2018.10.009. Epub 2018 Oct 24.
6
Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins.
J Biol Chem. 2015 Jul 24;290(30):18454-66. doi: 10.1074/jbc.M115.663559. Epub 2015 Jun 8.
7
Failure to Degrade CAT-Tailed Proteins Disrupts Neuronal Morphogenesis and Cell Survival.
Cell Rep. 2021 Jan 5;34(1):108599. doi: 10.1016/j.celrep.2020.108599.
8
A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus.
J Biol Chem. 2015 Feb 27;290(9):5606-20. doi: 10.1074/jbc.M114.632463. Epub 2014 Dec 29.
9
Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum.
J Biol Chem. 2014 Sep 12;289(37):25907-24. doi: 10.1074/jbc.M114.580688. Epub 2014 Jul 25.

本文引用的文献

1
NEMF-mediated Listerin-independent mitochondrial translational surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP.
Cell Rep. 2024 Mar 26;43(3):113860. doi: 10.1016/j.celrep.2024.113860. Epub 2024 Feb 26.
2
RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum.
Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2220340120. doi: 10.1073/pnas.2220340120. Epub 2023 Apr 10.
3
SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum.
Cell Rep. 2023 Jan 31;42(1):112028. doi: 10.1016/j.celrep.2023.112028. Epub 2023 Jan 23.
4
Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control.
Mol Cell. 2023 Feb 16;83(4):607-621.e4. doi: 10.1016/j.molcel.2023.01.020.
5
Ribosome-associated quality-control mechanisms from bacteria to humans.
Mol Cell. 2022 Apr 21;82(8):1451-1466. doi: 10.1016/j.molcel.2022.03.038.
6
Ribosome-associated quality control and CAT tailing.
Crit Rev Biochem Mol Biol. 2021 Dec;56(6):603-620. doi: 10.1080/10409238.2021.1938507. Epub 2021 Jul 7.
7
Detecting and Rescuing Stalled Ribosomes.
Trends Biochem Sci. 2021 Sep;46(9):731-743. doi: 10.1016/j.tibs.2021.03.008. Epub 2021 May 6.
8
Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing.
Mol Cell. 2021 May 20;81(10):2112-2122.e7. doi: 10.1016/j.molcel.2021.03.004. Epub 2021 Apr 27.
9
The nascent polypeptide in the 60S subunit determines the Rqc2-dependency of ribosomal quality control.
Nucleic Acids Res. 2021 Feb 26;49(4):2102-2113. doi: 10.1093/nar/gkab005.
10
Clearing Traffic Jams During Protein Translocation Across Membranes.
Front Cell Dev Biol. 2021 Jan 8;8:610689. doi: 10.3389/fcell.2020.610689. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验