Ennis Amanda, Wang Lihui, Xu Yue, Saidi Layla, Wang Xiaorong, Yu Clinton, Yun Sijung, Huang Lan, Ye Yihong
Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202408199. Epub 2025 Apr 21.
Ribosome stalling during co-translational translocation at the ER causes translocon clogging and impairs ER protein biogenesis. Mammalian cells resolve translocon clogging via a poorly characterized translocation-associated quality control (TAQC) process. Here, we combine a genome-wide CRISPR screen with live-cell imaging to dissect the molecular linchpin of TAQC. We show that TAQC substrates translated from mRNAs bearing a ribosome-stalling poly(A) sequence are degraded by lysosomes and the proteasome. By contrast, the degradation of defective nascent chains encoded by nonstop (NS) mRNAs involves an unconventional ER-associated protein degradation (ERAD) mechanism depending on ER-to-Golgi trafficking, KDEL-mediated substrate retrieval at the Golgi, and a tRNA-binding factor NEMF that appends an aggregation-prone carboxyl tail to stalled NS nascent chains. We propose that NEMF-mediated CAT tailing targets a subset of TAQC substrates via Golgi retrieval for ERAD, safeguarding ER homeostasis.
核糖体在内质网(ER)共翻译转运过程中发生停滞会导致转运体堵塞,并损害内质网蛋白质生物合成。哺乳动物细胞通过一个特征不明的转运相关质量控制(TAQC)过程来解决转运体堵塞问题。在这里,我们将全基因组CRISPR筛选与活细胞成像相结合,以剖析TAQC的分子关键环节。我们发现,从带有核糖体停滞多聚腺苷酸(poly(A))序列的mRNA翻译而来的TAQC底物会被溶酶体和蛋白酶体降解。相比之下,由无义(NS)mRNA编码的有缺陷新生链的降解涉及一种非常规的内质网相关蛋白降解(ERAD)机制,该机制依赖于内质网到高尔基体的运输、高尔基体处KDEL介导的底物回收,以及一个tRNA结合因子NEMF,它会在停滞的NS新生链上附加一个易于聚集的羧基末端。我们提出,NEMF介导的CAT加尾通过高尔基体回收将一部分TAQC底物靶向进行ERAD,从而维护内质网稳态。