Klamt Steffen, Zanghellini Jürgen, von Kamp Axel
Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Sensengasse 8/15,1090 Vienna, Austria.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf188.
Minimal cut sets (MCSs) have emerged as an important branch of constraint-based metabolic modeling, offering a versatile framework for analyzing and engineering metabolic networks. Over the past two decades, MCSs have evolved from a theoretical concept into a powerful tool for identifying tailored metabolic intervention strategies and studying robustness and failure modes of metabolic networks. Successful (experimental) applications range from designing highly efficient microbial cell factories to targeting cancer cell metabolism. This review highlights key conceptual and algorithmic advancements that have transformed MCSs into a flexible methodology applicable to metabolic models of any size. It also provides a comprehensive overview of their applications and concludes with a perspective on future research directions. The review aims to equip both newcomers and experts with the knowledge needed to effectively leverage MCSs for metabolic network analysis and design, therapeutic targeting, and beyond.
最小割集(MCSs)已成为基于约束的代谢建模的一个重要分支,为分析和构建代谢网络提供了一个通用框架。在过去二十年中,MCSs已从一个理论概念发展成为一种强大的工具,用于识别定制的代谢干预策略以及研究代谢网络的鲁棒性和故障模式。成功的(实验性)应用范围从设计高效的微生物细胞工厂到靶向癌细胞代谢。本综述重点介绍了关键的概念和算法进展,这些进展已将MCSs转变为一种适用于任何规模代谢模型的灵活方法。它还全面概述了它们的应用,并对未来的研究方向进行了展望。本综述旨在为新手和专家提供有效利用MCSs进行代谢网络分析与设计、治疗靶点研究等所需的知识。