Hizem Moez, Bousbia Leila, Ben Dhiab Yassmine, Aoueileyine Mohamed Ould-Elhassen, Bouallegue Ridha
Innov'COM Laboratory, Higher School of Communication of Tunis, University of Carthage, Tunis 1054, Tunisia.
Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia.
Sensors (Basel). 2025 Apr 15;25(8):2496. doi: 10.3390/s25082496.
The advent of Tiny Machine Learning (TinyML) has unlocked the potential to deploy machine learning models on resource-constrained edge devices, revolutionizing real-time monitoring in Internet of Medical Things (IoMT) applications. This study introduces a novel approach to real-time electrocardiogram (ECG) anomaly detection by integrating TinyML with edge Artificial Intelligence (AI) on low-power embedded systems. We demonstrate the feasibility and effectiveness of deploying optimized models on edge devices, such as the Raspberry Pi and Arduino, to detect ECG anomalies, including arrhythmias. The proposed workflow encompasses data preprocessing, feature extraction, and model inference, all executed directly on the edge device, eliminating the need for cloud resources. To address the constraints of memory and power consumption in wearable devices, we applied advanced optimization techniques, including model pruning and quantization, achieving an optimal balance between accuracy and resource utilization. The optimized model achieved an accuracy of 92.3% while reducing the power consumption to 0.024 mW, enabling continuous, long-term health monitoring with minimal energy requirements. This work highlights the potential of TinyML to advance edge AI for real-time medical applications.
微型机器学习(TinyML)的出现开启了在资源受限的边缘设备上部署机器学习模型的可能性,彻底改变了医疗物联网(IoMT)应用中的实时监测。本研究介绍了一种通过在低功耗嵌入式系统上集成TinyML与边缘人工智能(AI)来进行实时心电图(ECG)异常检测的新方法。我们展示了在诸如树莓派和 Arduino 等边缘设备上部署优化模型以检测包括心律失常在内的ECG异常的可行性和有效性。所提出的工作流程包括数据预处理、特征提取和模型推理,所有这些都直接在边缘设备上执行,无需云资源。为了解决可穿戴设备中的内存和功耗限制,我们应用了先进的优化技术,包括模型剪枝和量化,在准确性和资源利用率之间实现了最佳平衡。优化后的模型在将功耗降低到0.024 mW的同时,准确率达到了92.3%,能够以最低的能量需求实现持续的长期健康监测。这项工作突出了TinyML在推进边缘AI用于实时医疗应用方面的潜力。