Suppr超能文献

机器学习揭示聚合物胶束中的胺类型决定mRNA结合及肺选择性递送性能。

Machine Learning Reveals Amine Type in Polymer Micelles Determines mRNA Binding, Performance for Lung-Selective Delivery.

作者信息

Panda Sidharth, Eaton Ella J, Muralikrishnan Praveen, Stelljes Erin M, Seelig Davis, Leyden Michael C, Gilkey Alexandria K, Barnes Jackson T, Morrissey David V, Sarupria Sapna, Moriarity Branden S, Reineke Theresa M

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

JACS Au. 2025 Apr 14;5(4):1845-1861. doi: 10.1021/jacsau.5c00084. eCollection 2025 Apr 28.

Abstract

Cationic micelles, composed of amphiphilic block copolymers with polycationic coronas, offer a customizable platform for mRNA delivery. Here, we present a library of 30 cationic micelle nanoparticles (MNPs) formulated from diblock copolymers with reactive poly(pentafluorophenol acrylate) backbones modified with diverse amines. This library systematically varies in nitrogen-based cationic functionalities, exhibiting a spectrum of properties that encompass varied degrees of alkyl substitution (A1-A5), piperazine (A6), oligoamine (A7), guanidinium (A8), and hydroxylation (A9-A10) that vary in side-chain volume, substitution pattern, hydrophilicity, and p to assess parameter impact on mRNA delivery. delivery assays using GFP+ mRNA across multiple cell lines reveal that amine side-chain bulk and chemical structure critically affect performance. Using machine learning analysis via SHapley Additive exPlanations (SHAP) on 180 formulations (3780 experimental measurements), we mapped key relationships between amine chemistry and performance metrics, finding that amine-specific binding efficiency was a major determinant of mRNA delivery efficacy, cell viability, and GFP intensity. Micelles with stronger mRNA binding capabilities (A1 and A7) have higher cellular delivery performance, whereas those with intermediate binding tendencies deliver a higher amount of functional mRNA per cell (A2, A10). This indicates that balancing the binding strength is crucial for performance. Micelles with hydrophobic and bulky pendant groups (A3-A5) tend to induce necrosis during cellular delivery, highlighting the significance of chemical optimization. A7 amphiphile, displaying primary and secondary amine, consistently demonstrates the highest GFP expression across various cell types and achieves high delivery specificity to lung tissue upon intravenous administration. Moreover, we established a strong correlation between and performance using Multitask Gaussian Process models, underscoring the predictive power of models for anticipating outcomes. Overall, this innovative study integrates advanced data science with experimental design, demonstrating the pivotal role of chemical amine-dependent optimization for advancing targeted mRNA delivery to the lungs.

摘要

由具有聚阳离子冠层的两亲性嵌段共聚物组成的阳离子胶束为mRNA递送提供了一个可定制的平台。在此,我们展示了一个由30种阳离子胶束纳米颗粒(MNP)组成的文库,这些纳米颗粒由二嵌段共聚物制备而成,其具有反应性聚(五氟苯酚丙烯酸酯)主链,并经多种胺修饰。该文库在基于氮的阳离子功能方面系统地变化,展现出一系列性质,包括不同程度的烷基取代(A1 - A5)、哌嗪(A6)、低聚胺(A7)、胍盐(A8)和羟基化(A9 - A10),这些在侧链体积、取代模式、亲水性和p方面各不相同,以评估参数对mRNA递送的影响。使用绿色荧光蛋白阳性(GFP +)mRNA对多种细胞系进行的递送分析表明,胺侧链的体积和化学结构对性能有至关重要影响。通过对180种制剂(3780次实验测量)进行基于夏普利值附加解释(SHAP)的机器学习分析,我们绘制了胺化学性质与性能指标之间的关键关系,发现胺特异性结合效率是mRNA递送效率、细胞活力和GFP强度的主要决定因素。具有更强mRNA结合能力的胶束(A1和A7)具有更高的细胞递送性能,而那些具有中等结合倾向的胶束每细胞递送更高量的功能性mRNA(A2,A10)。这表明平衡结合强度对于性能至关重要。具有疏水且庞大侧基的胶束(A3 - A5)在细胞递送过程中倾向于诱导坏死,突出了化学优化的重要性。显示伯胺和仲胺的A7两亲物在各种细胞类型中始终表现出最高的GFP表达,并且在静脉内给药后对肺组织实现高递送特异性。此外,我们使用多任务高斯过程模型建立了与性能之间的强相关性,强调了模型对预测结果的预测能力。总体而言,这项创新性研究将先进的数据科学与实验设计相结合,证明了化学胺依赖性优化对于推进靶向mRNA递送至肺部的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/12041957/502c57918f2d/au5c00084_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验