Suppr超能文献

具有荧光寿命读数的硫醇-二硫键氧化还原生物传感器的机制与应用

Mechanism and application of thiol-disulfide redox biosensors with a fluorescence-lifetime readout.

作者信息

Rosen Paul C, Glaser Andrew, Martínez-François Juan R, Lim Daniel C, Brooks Daniel J, Fu Panhui, Kim Erica, Kern Dorothee, Yellen Gary

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA 02115.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2503978122. doi: 10.1073/pnas.2503978122. Epub 2025 May 6.

Abstract

Genetically encoded biosensors with changes in fluorescence lifetime (as opposed to fluorescence intensity) can quantify small molecules in complex contexts, even in vivo. However, lifetime-readout sensors are poorly understood at a molecular level, complicating their development. Although there are many sensors that have fluorescence-intensity changes, there are currently only a few with fluorescence-lifetime changes. Here, we optimized two biosensors for thiol-disulfide redox (RoTq-Off and RoTq-On) with opposite changes in fluorescence lifetime in response to oxidation. Using biophysical approaches, we showed that the high-lifetime states of these sensors lock the chromophore more firmly in place than their low-lifetime states do. Two-photon fluorescence lifetime imaging of RoTq-On fused to a glutaredoxin (Grx1) enabled robust, straightforward monitoring of cytosolic glutathione redox state in acute mouse brain slices. The motional mechanism described here is probably common and may inform the design of other lifetime-readout sensors; the Grx1-RoTq-On fusion sensor will be useful for studying glutathione redox in physiology.

摘要

荧光寿命发生变化(与荧光强度变化相反)的基因编码生物传感器能够在复杂环境中,甚至在体内对小分子进行定量分析。然而,在分子水平上,人们对寿命读出传感器的了解甚少,这使得它们的开发变得复杂。虽然有许多具有荧光强度变化的传感器,但目前只有少数具有荧光寿命变化的传感器。在这里,我们优化了两种用于硫醇-二硫化物氧化还原的生物传感器(RoTq-Off和RoTq-On),它们在氧化时荧光寿命呈现相反的变化。通过生物物理方法,我们表明这些传感器的高寿命状态比低寿命状态更能将发色团牢固地锁定在原位。与谷氧还蛋白(Grx1)融合的RoTq-On的双光子荧光寿命成像能够在急性小鼠脑切片中对胞质谷胱甘肽氧化还原状态进行稳健、直接的监测。这里描述的运动机制可能很常见,并且可能为其他寿命读出传感器的设计提供参考;Grx1-RoTq-On融合传感器将有助于研究生理学中的谷胱甘肽氧化还原。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773c/12088395/6c31c96b6e8b/pnas.2503978122fig01.jpg

相似文献

1
Mechanism and application of thiol-disulfide redox biosensors with a fluorescence-lifetime readout.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2503978122. doi: 10.1073/pnas.2503978122. Epub 2025 May 6.
2
Transient light-induced intracellular oxidation revealed by redox biosensor.
Biochem Biophys Res Commun. 2013 Oct 4;439(4):517-21. doi: 10.1016/j.bbrc.2013.09.011. Epub 2013 Sep 8.
4
Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol-Disulfide Exchange between Protein Thiols and Glutathione.
J Mol Biol. 2019 Jan 18;431(2):158-177. doi: 10.1016/j.jmb.2018.12.006. Epub 2018 Dec 12.
5
The dithiol mechanism of class I glutaredoxins promotes specificity for glutathione as a reducing agent.
Redox Biol. 2024 Dec;78:103410. doi: 10.1016/j.redox.2024.103410. Epub 2024 Oct 24.
6
Red fluorescent redox-sensitive biosensor Grx1-roCherry.
Redox Biol. 2019 Feb;21:101071. doi: 10.1016/j.redox.2018.101071. Epub 2018 Dec 7.
9
Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
J Biol Chem. 2007 May 11;282(19):14428-36. doi: 10.1074/jbc.M700927200. Epub 2007 Mar 13.
10
Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.
Free Radic Biol Med. 2013 Dec;65:436-445. doi: 10.1016/j.freeradbiomed.2013.07.033. Epub 2013 Jul 25.

本文引用的文献

1
State-dependent motion of a genetically encoded fluorescent biosensor.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2426324122. doi: 10.1073/pnas.2426324122. Epub 2025 Mar 6.
2
4
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
5
Quantitative, real-time imaging of spreading depolarization-associated neuronal ROS production.
Front Cell Neurosci. 2024 Oct 11;18:1465531. doi: 10.3389/fncel.2024.1465531. eCollection 2024.
7
UCSF ChimeraX: Tools for structure building and analysis.
Protein Sci. 2023 Nov;32(11):e4792. doi: 10.1002/pro.4792.
8
Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.
Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.
9
ModelCraft: an advanced automated model-building pipeline using Buccaneer.
Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1090-1098. doi: 10.1107/S2059798322007732. Epub 2022 Aug 25.
10
Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
Sci Rep. 2022 Jul 13;12(1):11938. doi: 10.1038/s41598-022-15639-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验