Liu Qianhui, Wu Qian, Liu Jiawen, Xu Tianming, Liu Jing, Wu Qin, Malakar Pradeep K, Zhu Yongheng, Zhao Yong, Zhang Zhaohuan
College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
Int J Mol Sci. 2025 Apr 17;26(8):3780. doi: 10.3390/ijms26083780.
biofilms, driven by extracellular polysaccharides (EPSs), exacerbate pathogenicity and drug resistance, posing critical threats to public health. While EPS biosynthesis pathways are central to biofilm formation, their distinct contributions and regulatory dynamics remain incompletely understood. Here, we systematically dissect the roles of three core EPS pathways-Psl, Pel, and alginate-in biofilm architecture and function using multi-omics approaches. Key findings reveal Psl as the dominant regulator of biofilm elasticity and thickness, with its deletion disrupting chemotaxis, quorum sensing, and 3',5'-Cyclic GMP (c-di-GMP)/amino acid metabolism. Pel redundantly enhances biofilm biomass, but elevates flagellar synthesis efficiency when Psl is absent. Alginate exhibited negligible transcriptional or metabolic influence on biofilms. These insights clarify hierarchical EPS contributions and highlight Psl as a priority target for therapeutic strategies to dismantle biofilm-mediated resistance.
由细胞外多糖(EPSs)驱动的生物膜会加剧致病性和耐药性,对公众健康构成重大威胁。虽然EPS生物合成途径是生物膜形成的核心,但其独特贡献和调控动态仍未完全明确。在此,我们使用多组学方法系统剖析了三种核心EPS途径——Psl、Pel和藻酸盐——在生物膜结构和功能中的作用。主要发现表明,Psl是生物膜弹性和厚度的主要调节因子,其缺失会破坏趋化性、群体感应以及3',5'-环鸟苷酸(c-di-GMP)/氨基酸代谢。Pel在增加生物膜生物量方面具有冗余作用,但在Psl缺失时会提高鞭毛合成效率。藻酸盐对生物膜的转录或代谢影响可忽略不计。这些见解阐明了EPS的分层贡献,并突出了Psl作为消除生物膜介导耐药性治疗策略的优先靶点。