Armstrong Raveen, Romprey Matt J, Raughley Henry M, Delzell Stephanie B, Frost Matthew P, Chambers James, Garman Grace G, Anaguano David, Klingbeil Michele M
Department of Microbiology, University of Massachusetts, Amherst, Massachusetts United States of America.
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States of America.
PLoS One. 2025 May 12;20(5):e0321334. doi: 10.1371/journal.pone.0321334. eCollection 2025.
Trypanosoma brucei is a tractable protist parasite for which many genetic tools have been developed to study novel biology. A striking feature of T. brucei is the catenated mitochondrial DNA network called the kinetoplast DNA (kDNA) that is essential for parasite survival and life cycle completion. Maintenance of kDNA requires three independently essential paralogs that have homology to bacterial DNA polymerase I (POLIB, POLIC and POLID). We previously demonstrated that POLIB has a divergent domain architecture that displayed enzymatic properties atypical for replicative DNA polymerases. To evaluate the functional domains required for kDNA replication in vivo, we pursued an RNAi complementation approach based on the widely used tetracycline (Tet) single inducer system. Tet induction of RNAi and complementation with wildtype POLIB (POLIBWT) resulted in a 93% knockdown of endogenous POLIB mRNA but insufficient ectopic POLIBWT expression. This incomplete rescue emphasized the need for a more versatile induction system that will allow independent, tunable, and temporal regulation of gene expression. Hence, we adapted a dual control vanillic acid (Van)-Tet system that can independently control gene expression for robust RNAi complementation. Dual induction with Van and Tet (RNAi + Overexpression) resulted in 91% endogenous POLIB knockdown accompanied by robust and sustained ectopic expression of POLIBWT, and a near complete rescue of the POLIB RNAi defects. To more precisely quantify changes in kDNA size during RNAi, we also developed a semi-automated 3D image analysis tool to measure kDNA volume. Here we provide proof of principle for a dual inducer system that allows more flexible control of gene expression to perform RNAi and overexpression independently or concurrently within a single cell line. This system overcomes limitations of the single inducer system and can be valuable for elegant mechanistic studies in the field.
布氏锥虫是一种易于处理的原生生物寄生虫,人们已开发出许多遗传工具来研究其新生物学特性。布氏锥虫的一个显著特征是由连环线粒体DNA网络组成的动基体DNA(kDNA),它对于寄生虫的存活和生命周期的完成至关重要。kDNA的维持需要三个独立的必需旁系同源物,它们与细菌DNA聚合酶I具有同源性(POLIB、POLIC和POLID)。我们之前证明,POLIB具有不同的结构域架构,其显示出的酶学特性对于复制性DNA聚合酶而言是非典型的。为了评估体内kDNA复制所需的功能结构域,我们采用了基于广泛使用的四环素(Tet)单一诱导系统的RNA干扰互补方法。Tet诱导RNA干扰并与野生型POLIB(POLIBWT)互补,导致内源性POLIB mRNA敲低93%,但异位POLIBWT表达不足。这种不完全挽救强调了需要一个更通用的诱导系统,该系统将允许对基因表达进行独立、可调谐和时间调控。因此,我们采用了一种双控香草酸(Van)-Tet系统,该系统可以独立控制基因表达以实现强大的RNA干扰互补。用Van和Tet进行双重诱导(RNA干扰+过表达)导致内源性POLIB敲低91%,同时伴随着POLIBWT的强大且持续的异位表达,以及POLIB RNA干扰缺陷的近乎完全挽救。为了更精确地量化RNA干扰期间kDNA大小的变化,我们还开发了一种半自动3D图像分析工具来测量kDNA体积。在这里,我们为双诱导系统提供了原理证明,该系统允许更灵活地控制基因表达,以便在单个细胞系中独立或同时进行RNA干扰和过表达。该系统克服了单一诱导系统的局限性,对于该领域精细的机制研究可能具有重要价值。