Coronel Raquel, González-Sastre Rosa, Mateos-Martínez Patricia, Maeso Laura, Llorente-Beneyto Elena, Martín-Benito Sabela, Gagosian Viviana S Costa, Foti Leonardo, González-Caballero Ma Carmen, López-Alonso Victoria, Liste Isabel
Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain.
Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain.
Neural Regen Res. 2025 May 6. doi: 10.4103/NRR.NRR-D-24-01639.
The brain is the most complex human organ, and commonly used models, such as two-dimensionalcell cultures and animal brains, often lack the sophistication needed to accurately use in research. In this context, human cerebral organoids have emerged as valuable tools offering a more complex, versatile, and human-relevant system than traditional animal models, which are often unable to replicate the intricate architecture and functionality of the human brain. Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain, this field is currently under constant development, and work in this area is abundant. In this review, we give a complete overview of human cerebral organoids technology, starting from the different types of protocols that exist to generate different human cerebral organoids. We continue with the use of brain organoids for the study of brain pathologies, highlighting neurodevelopmental, psychiatric, neurodegenerative, brain tumor, and infectious diseases. Because of the potential value of human cerebral organoids, we describe their use in transplantation, drug screening, and toxicology assays. We also discuss the technologies available to study cell diversity and physiological characteristics of organoids. Finally, we summarize the limitations that currently exist in the field, such as the development of vasculature and microglia, and highlight some of the novel approaches being pursued through bioengineering.
大脑是人类最复杂的器官,而常用的模型,如二维细胞培养和动物大脑,往往缺乏在研究中准确应用所需的复杂性。在此背景下,人类大脑类器官已成为有价值的工具,提供了一个比传统动物模型更复杂、多功能且与人类相关的系统,传统动物模型往往无法复制人类大脑的复杂结构和功能。由于人类大脑类器官是研究神经发育和影响大脑的不同病理状况的前沿模型,该领域目前处于不断发展中,且这方面的研究工作丰富多样。在本综述中,我们全面概述了人类大脑类器官技术,从存在的用于生成不同人类大脑类器官的不同类型方案开始。接着我们阐述了大脑类器官在研究脑部病理状况方面的应用,重点介绍了神经发育、精神、神经退行性、脑肿瘤和感染性疾病。鉴于人类大脑类器官的潜在价值,我们描述了它们在移植、药物筛选和毒理学检测中的应用。我们还讨论了用于研究类器官细胞多样性和生理特征的现有技术。最后,我们总结了该领域目前存在的局限性,如血管系统和小胶质细胞的发育,并强调了通过生物工程正在探索的一些新方法。