Suppr超能文献

机器人踝足假肢模拟器的设计、控制与评估

Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator.

作者信息

Anderson Anthony J, Hudak Yuri F, Muir Brittney C, Aubin Patrick M

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA 98116 USA, and also with the Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, WA 98018 USA.

Department of Mechanical Engineering and the Department Orthopaedic and Sports Medicine, University of Washington, Seattle, WA 98116 USA.

出版信息

IEEE Trans Med Robot Bionics. 2023 Jun 30;5(3):741-752. doi: 10.1109/TMRB.2023.3291015.

Abstract

People with transtibial limb loss experience reduced mobility. Intelligent ankle-foot prostheses have the potential to improve quality of life in people with limb loss, but there are scientific, clinical, and commercial barriers that prevent widespread impact. Further research tools and experiments are needed to expand our understanding of how to design and control intelligent prosthetic limbs. We designed and built a robotic ankle-foot prosthesis with off-board actuation and control to serve as a platform for biomechanical lower limb loss research. Our prosthesis fits inside of a shoe during walking and attaches to standard clinical prosthesis componentry, including carbon fiber prosthetic footplates and pyramid adapters. Our novel mechanical architecture implements a custom torsion spring in parallel with the ankle joint to allow for dorsiflexion and plantarflexion torque control with a single off-board actuator. Benchtop tests show that our prosthesis has peak plantarflexion torques greater than 175 Nm and a torque control bandwidth of 6.1 Hz. Walking experiments with two participants with lower limb loss indicate that the prosthesis can achieve low torque tracking errors and push-off power greater than the biological ankle during walking. This device will enable future experiments on amputee gait biomechanics, human-robot interaction, and prosthesis control.

摘要

经胫骨肢体缺失的人行动能力会下降。智能踝足假肢有潜力改善肢体缺失者的生活质量,但存在科学、临床和商业方面的障碍,阻碍了其广泛应用。需要进一步的研究工具和实验来加深我们对如何设计和控制智能假肢的理解。我们设计并制造了一种带有外置驱动和控制装置的机器人踝足假肢,作为下肢缺失生物力学研究的平台。我们的假肢在行走时可安装在鞋子内部,并与标准临床假肢部件相连,包括碳纤维假肢脚板和金字塔适配器。我们新颖的机械结构在踝关节处并联了一个定制的扭力弹簧,以便通过单个外置驱动器实现背屈和跖屈扭矩控制。台式测试表明,我们的假肢跖屈峰值扭矩大于175牛米,扭矩控制带宽为6.1赫兹。对两名下肢缺失参与者进行的行走实验表明,该假肢在行走过程中能够实现低扭矩跟踪误差,并且蹬离功率大于生物踝关节。该装置将为未来关于截肢者步态生物力学、人机交互和假肢控制的实验提供支持。

相似文献

1
Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator.
IEEE Trans Med Robot Bionics. 2023 Jun 30;5(3):741-752. doi: 10.1109/TMRB.2023.3291015.
2
A universal ankle-foot prosthesis emulator for human locomotion experiments.
J Biomech Eng. 2014 Mar;136(3):035002. doi: 10.1115/1.4026225.
4
A robotic emulator for the systematic exploration of transtibial biarticular prosthesis designs.
J Rehabil Assist Technol Eng. 2024 Sep 13;11:20556683241280733. doi: 10.1177/20556683241280733. eCollection 2024 Jan-Dec.
5
Design, Characterization, and Preliminary Assessment of a Two-Degree-of-Freedom Powered Ankle-Foot Prosthesis.
Biomimetics (Basel). 2024 Jan 26;9(2):76. doi: 10.3390/biomimetics9020076.
6
An Ankle-Foot Prosthesis Emulator Capable of Modulating Center of Pressure.
IEEE Trans Biomed Eng. 2020 Jan;67(1):166-176. doi: 10.1109/TBME.2019.2910071. Epub 2019 Apr 9.
7
8
Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
PLoS One. 2016 Dec 15;11(12):e0166815. doi: 10.1371/journal.pone.0166815. eCollection 2016.
9
Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait.
J Biomech. 2021 Dec 2;129:110749. doi: 10.1016/j.jbiomech.2021.110749. Epub 2021 Sep 11.
10
Evaluation of a powered ankle-foot prosthetic system during walking.
Arch Phys Med Rehabil. 2012 Nov;93(11):1911-8. doi: 10.1016/j.apmr.2012.06.009. Epub 2012 Jun 22.

引用本文的文献

1
Materials and Structures Inspired by Human Heel Pads for Advanced Biomechanical Function.
Biomimetics (Basel). 2025 Apr 27;10(5):267. doi: 10.3390/biomimetics10050267.

本文引用的文献

1
Robotic Emulation of Candidate Prosthetic Foot Designs May Enable Efficient, Evidence-Based, and Individualized Prescriptions.
J Prosthet Orthot. 2022 Oct;34(4):202-212. doi: 10.1097/JPO.0000000000000409. Epub 2021 Dec 30.
2
4
An Overview on Principles for Energy Efficient Robot Locomotion.
Front Robot AI. 2018 Dec 11;5:129. doi: 10.3389/frobt.2018.00129. eCollection 2018.
6
A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:320-329. doi: 10.1109/TNSRE.2021.3049194. Epub 2021 Mar 2.
7
Design and clinical implementation of an open-source bionic leg.
Nat Biomed Eng. 2020 Oct;4(10):941-953. doi: 10.1038/s41551-020-00619-3. Epub 2020 Oct 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验