Suppr超能文献

通过锚定细胞片工程制备的肌肉特异性脱细胞细胞外基质纤维可支持大鼠大面积肌肉损伤模型的再生。

Muscle-specific acellular ECM fibers made with anchored cell sheet engineering support regeneration in rat models of volumetric muscle loss.

作者信息

Shahin-Shamsabadi Alireza, Cappuccitti John

机构信息

Evolved.Bio, 280 Joseph Street, Kitchener, Ontario, N2G4Z5, Canada.

Evolved.Bio, 280 Joseph Street, Kitchener, Ontario, N2G4Z5, Canada.

出版信息

Acta Biomater. 2025 Jun 15;200:416-431. doi: 10.1016/j.actbio.2025.05.024. Epub 2025 May 20.

Abstract

Volumetric muscle loss (VML), a condition affecting millions due to trauma, represents a critical unmet need in regenerative medicine, with no established standard of care. This study introduces a de novo therapeutic strategy using tissue-specific skeletal muscle acellular extracellular matrix (aECM) fibers fabricated using scaffold-free Anchored Cell Sheet Engineering technique. These engineered fibers replicate the native ECM composition and microarchitecture of skeletal muscle, incorporating essential structural and basement membrane proteins. In a rat VML model, aECM demonstrated promising regenerative capacity compared to commercial porcine-derived small intestine submucosa (SIS) ECM. Over an 8-week period, compared to contralateral muscle, aECM preserved muscle volume and weight, regulated inflammatory and fibrotic responses, and promoted vascularization. In contrast, SIS was rapidly degraded by week 4 and associated with fibrosis. Force recovery in aECM was lower at the 8-week time point (77 % compared to 91 % in control), but histological and immunohistochemical analyses revealed newly formed, dispersed muscle fibers exclusively in aECM treatment. Importantly, muscle weight was preserved only when aECM was used, resulting in similar normalized force-to-weight across all groups (87 % in aECM vs. 88 % in SIS). The histological analyses further demonstrated ongoing tissue remodeling, indicative of sustained regeneration, in contrast to the premature fibrotic healing observed in the other groups. An innovative quantitative image analysis workflow enabled assessment of spatial tissue heterogeneity through histology and immunohistochemistry images, setting a new standard for regeneration analysis. These findings establish engineered tissue-specific aECM as a transformative approach for VML treatment, laying the groundwork for translation to clinical applications. STATEMENT OF SIGNIFICANCE: The current study introduces a transformative approach to treating volumetric muscle loss (VML) through the development of tissue-specific acellular extracellular matrix (aECM) fibers engineered using a scaffold-free biofabrication platform uniquely suited for recreation of such aECM components. The engineered fibers represent a significant advancement over current commercial options by recreating native ECM composition and microarchitecture while eliminating complications associated with xenogenic materials. Through comprehensive in vivo evaluation in a rat model, it is demonstrated that these engineered fibers maintain muscle mass and promote controlled tissue regeneration, addressing key limitations of existing treatments. The scaffold-free biofabrication of tissue-specific aECM provides a new paradigm for biomaterial design in regenerative medicine.

摘要

容积性肌肉损失(VML)是一种因创伤影响数百万人的病症,是再生医学中一项尚未满足的关键需求,目前尚无既定的治疗标准。本研究引入了一种全新的治疗策略,即使用无支架锚定细胞片工程技术制造的组织特异性骨骼肌脱细胞细胞外基质(aECM)纤维。这些工程纤维复制了骨骼肌的天然细胞外基质组成和微观结构,包含了重要的结构蛋白和基底膜蛋白。在大鼠VML模型中,与市售猪源小肠黏膜下层(SIS)细胞外基质相比,aECM显示出有前景的再生能力。在8周的时间里,与对侧肌肉相比,aECM保留了肌肉体积和重量,调节了炎症和纤维化反应,并促进了血管生成。相比之下,SIS在第4周时迅速降解,并伴有纤维化。在8周时间点,aECM组的力量恢复较低(77%,而对照组为91%),但组织学和免疫组织化学分析显示,仅在aECM治疗组中有新形成的、分散的肌纤维。重要的是,只有使用aECM时肌肉重量才能得以保留,从而使所有组的归一化力量与重量相似(aECM组为87%,SIS组为88%)。组织学分析进一步表明,与其他组中观察到的过早纤维化愈合不同,aECM组存在持续的组织重塑,这表明再生持续进行。一种创新的定量图像分析工作流程能够通过组织学和免疫组织化学图像评估空间组织异质性,为再生分析设定了新的标准。这些发现确立了工程化组织特异性aECM作为VML治疗的变革性方法,为转化到临床应用奠定了基础。

意义声明

当前研究通过开发使用无支架生物制造平台制造的组织特异性脱细胞细胞外基质(aECM)纤维,引入了一种治疗容积性肌肉损失(VML)的变革性方法,该平台特别适合重现此类aECM成分。这些工程纤维通过重现天然细胞外基质组成和微观结构,同时消除与异种材料相关的并发症,代表了相对于当前商业选择的重大进步。通过在大鼠模型中的全面体内评估,证明这些工程纤维能够维持肌肉质量并促进可控的组织再生,解决了现有治疗方法的关键局限性。组织特异性aECM的无支架生物制造为再生医学中的生物材料设计提供了新的范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验