Suppr超能文献

通过[镓]Ga-FAPI-46 PET/CT成像评估表现为磨玻璃结节的早期肺腺癌的局部区域侵袭性。

Evaluation of locoregional invasiveness of early lung adenocarcinoma manifesting as ground-glass nodules via [Ga]Ga-FAPI-46 PET/CT imaging.

作者信息

Ruan Dan, Shi Sien, Guo Weixi, Pang Yizhen, Yu Lingyu, Cai Jiayu, Wu Zhenyu, Wu Hua, Sun Long, Zhao Liang, Chen Haojun

机构信息

Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.

National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.

出版信息

Eur J Nucl Med Mol Imaging. 2025 May 24. doi: 10.1007/s00259-025-07361-5.

Abstract

PURPOSE

Accurate differentiation of the histologic invasiveness of early-stage lung adenocarcinoma is crucial for determining surgical strategies. This study aimed to investigate the potential of [Ga]Ga-FAPI-46 PET/CT in assessing the invasiveness of early lung adenocarcinoma presenting as ground-glass nodules (GGNs) and identifying imaging features with strong predictive potential.

METHODS

This prospective study (NCT04588064) was conducted between July 2020 and July 2022, focusing on GGNs that were confirmed postoperatively to be either invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma (MIA), or precursor glandular lesions (PGL). A total of 45 patients with 53 pulmonary GGNs were included in the study: 19 patients with GGNs associated with PGL-MIA and 34 with IAC. Lung nodules were segmented using the Segment Anything Model in Medical Images (MedSAM) and the PET Tumor Segmentation Extension. Clinical characteristics, along with conventional and high-throughput radiomics features from High-resolution CT (HRCT) and PET scans, were analysed. The predictive performance of these features in differentiating between PGL or MIA (PGL-MIA) and IAC was assessed using 5-fold cross-validation across six machine learning algorithms. Model validation was performed on an independent external test set (n = 11). The Chi-squared, Fisher's exact, and DeLong tests were employed to compare the performance of the models.

RESULTS

The maximum standardised uptake value (SUVmax) derived from [Ga]Ga-FAPI-46 PET was identified as an independent predictor of IAC. A cut-off value of 1.82 yielded a sensitivity of 94% (32/34), specificity of 84% (16/19), and an overall accuracy of 91% (48/53) in the training set, while achieving 100% (12/12) accuracy in the external test set. Radiomics-based classification further improved diagnostic performance, achieving a sensitivity of 97% (33/34), specificity of 89% (17/19), accuracy of 94% (50/53), and an area under the receiver operating characteristic curve (AUC) of 0.97 [95% CI: 0.93-1.00]. Compared with the CT-based radiomics model and the PET-based model, the combined PET/CT radiomics model did not show significant improvement in predictive performance. The key predictive feature was [Ga]Ga-FAPI-46 PET log-sigma-7-mm-3D_firstorder_RootMeanSquared.

CONCLUSION

The SUVmax derived from [Ga]Ga-FAPI-46 PET/CT can effectively differentiate the invasiveness of early-stage lung adenocarcinoma manifesting as GGNs. Integrating high-throughput features from [Ga]Ga-FAPI-46 PET/CT images can considerably enhance classification accuracy.

CLINICAL TRIAL REGISTRATION NUMBER

NCT04588064; URL: https://clinicaltrials.gov/study/NCT04588064 .

摘要

目的

准确区分早期肺腺癌的组织学侵袭性对于确定手术策略至关重要。本研究旨在探讨[镓]镓-FAPI-46 PET/CT在评估表现为磨玻璃结节(GGN)的早期肺腺癌侵袭性以及识别具有强预测潜力的影像特征方面的潜力。

方法

这项前瞻性研究(NCT04588064)于2020年7月至2022年7月进行,聚焦于术后确诊为浸润性腺癌(IAC)、微浸润性腺癌(MIA)或前驱腺性病变(PGL)的GGN。共有45例患者的53个肺GGN纳入研究:19例GGN与PGL-MIA相关,34例与IAC相关。使用医学图像中的分割一切模型(MedSAM)和PET肿瘤分割扩展对肺结节进行分割。分析临床特征以及来自高分辨率CT(HRCT)和PET扫描的传统和高通量影像组学特征。使用六种机器学习算法进行五折交叉验证,评估这些特征在区分PGL或MIA(PGL-MIA)与IAC方面的预测性能。在独立的外部测试集(n = 11)上进行模型验证。采用卡方检验、费舍尔精确检验和德龙检验比较模型性能。

结果

[镓]镓-FAPI-46 PET得出的最大标准化摄取值(SUVmax)被确定为IAC的独立预测指标。在训练集中,截断值为1.82时,敏感性为94%(32/34),特异性为84%(16/19),总体准确率为91%(48/53),而在外部测试集中准确率达到100%(12/12)。基于影像组学的分类进一步提高了诊断性能,敏感性为97%(33/34),特异性为89%(17/19),准确率为94%(50/53),受试者操作特征曲线下面积(AUC)为0.97 [95% CI:0.93 - 1.00]。与基于CT的影像组学模型和基于PET的模型相比,联合PET/CT影像组学模型在预测性能上未显示出显著改善。关键预测特征是[镓]镓-FAPI-46 PET log-sigma-7-mm-3D_firstorder_RootMeanSquared。

结论

[镓]镓-FAPI-46 PET/CT得出的SUVmax能够有效区分表现为GGN的早期肺腺癌的侵袭性。整合[镓]镓-FAPI-46 PET/CT图像的高通量特征可显著提高分类准确率。

临床试验注册号

NCT04588064;网址:https://clinicaltrials.gov/study/NCT04588064

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验