Canales-Huerta Nicole, Cádiz Martín, Ulloa María Teresa, Chilet Lucas Alé, Palma Karina, Jara-Wilde Jorge, Cuevas Fabrizio, González María José, Navarro Nicolás, Toledo Jorge, Castañeda Victor, Scavone Paola, Härtel Steffen
Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile.
Laboratory for Scientific Image Analysis SCIAN-Lab, Integrative Biology Program, Institute of Biomedical Sciences ICBM, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute BNI, Faculty of Medicine, University of Chile, Santiago, Chile; Centro de Informática Médica y Telemedicina CIMT, Faculty of Medicine, University of Chile, Santiago, Chile.
Microb Pathog. 2025 Sep;206:107712. doi: 10.1016/j.micpath.2025.107712. Epub 2025 May 22.
Urinary tract infections associated with the placement of indwelling urinary catheters are a significant concern in hospital settings, as they are linked to an increased risk of severe infections and complications due to biofilm formation. These infections are primarily caused by uropathogens such as Escherichia coli (UPEC). UPEC possesses peritrichous flagella, which facilitates its motility, adhesion to surfaces, and biofilm formation. Understanding the development of UPEC communities is essential for developing effective treatment and eradication strategies. In this study, we characterized the biofilm formation of a clinical non-motile UPEC strain under both static and dynamic culture conditions that simulate the urinary catheter environment. We developed a dynamic culture system coupled with light sheet fluorescence microscopy (LSFM) to quantify the stages of biofilm formation over time. Our results demonstrate that flagella play a crucial role in the initial phase of biofilm formation. The non-motile strain exhibited a delay in the adhesion phase compared to motile strains but ultimately formed biofilms of similar volume during subsequent stages. These findings highlight the significance of flagella in dynamic biofilm formation models and provide valuable insights for modeling the evolution of bacterial communities in nosocomial environments using LSFM.
与留置导尿管相关的尿路感染是医院环境中的一个重大问题,因为它们与由于生物膜形成导致的严重感染和并发症风险增加有关。这些感染主要由尿路病原体如大肠埃希菌(UPEC)引起。UPEC具有周生鞭毛,这有助于其运动、附着于表面以及生物膜形成。了解UPEC群落的发展对于制定有效的治疗和根除策略至关重要。在本研究中,我们在模拟导尿管环境的静态和动态培养条件下,对临床非运动性UPEC菌株的生物膜形成进行了表征。我们开发了一种结合光片荧光显微镜(LSFM)的动态培养系统,以量化生物膜形成随时间的阶段。我们的结果表明,鞭毛在生物膜形成的初始阶段起着关键作用。与运动性菌株相比,非运动性菌株在黏附阶段表现出延迟,但在随后阶段最终形成了体积相似的生物膜。这些发现突出了鞭毛在动态生物膜形成模型中的重要性,并为使用LSFM模拟医院环境中细菌群落的演变提供了有价值的见解。