Suppr超能文献

在自由生活条件下使用多模态可穿戴传感器开发无创连续血糖预测模型

Development of Non-Invasive Continuous Glucose Prediction Models Using Multi-Modal Wearable Sensors in Free-Living Conditions.

作者信息

Karunarathna Thilini S, Liang Zilu

机构信息

Ubiquitous and Personal Computing Laboratory, Kyoto University of Advanced Science (KUAS), Kyoto 615-8577, Japan.

Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.

出版信息

Sensors (Basel). 2025 May 20;25(10):3207. doi: 10.3390/s25103207.

Abstract

Continuous monitoring of glucose levels is important for diabetes management and prevention. While traditional glucose monitoring methods are often invasive and expensive, recent approaches using machine learning (ML) models have explored non-invasive alternatives-but many still depend on manually logged food intake and activity, which is burdensome and impractical for everyday use. In this study, we propose a novel approach that eliminates the need for manual input by utilizing only passively collected, automatically recorded multi-modal data from non-invasive wearable sensors. This enables practical and continuous glucose prediction in real-world, free-living environments. We used the BIG IDEAs Lab Glycemic Variability and Wearable Device Data (BIGIDEAs) dataset, which includes approximately 26,000 CGM readings, simultaneous ly collected wearable data, and demographic information. A total of 236 features encompassing physiological, behavioral, circadian, and demographic factors were constructed. Feature selection was conducted using random-forest-based importance analysis to select the most relevant features for model training. We evaluated the effectiveness of various ML regression techniques, including linear regression, ridge regression, random forest regression, and XGBoost regression, in terms of prediction and clinical accuracy. Biological sex, circadian rhythm, behavioral features, and tonic features of electrodermal activity (EDA) emerged as key predictors of glucose levels. Tree-based models outperformed linear models in both prediction and clinical accuracy. The XGBoost (XR) model performed best, achieving an R-squared of 0.73, an RMSE of 11.9 mg/dL, an NRMSE of 0.52 mg/dL, a MARD of 7.1%, and 99.4% of predictions falling within Zones A and B of the Clarke Error Grid. This study demonstrates the potential of combining feature engineering and tree-based ML regression techniques for continuous glucose monitoring using wearable sensors.

摘要

持续监测血糖水平对于糖尿病管理和预防至关重要。虽然传统的血糖监测方法通常具有侵入性且成本高昂,但最近使用机器学习(ML)模型的方法已经探索了非侵入性替代方案——但许多方法仍然依赖于手动记录的食物摄入量和活动情况,这对于日常使用来说既繁琐又不切实际。在本研究中,我们提出了一种新颖的方法,该方法仅利用从非侵入性可穿戴传感器被动收集、自动记录的多模态数据,从而无需手动输入。这使得在现实生活、自由活动的环境中进行实用且持续的血糖预测成为可能。我们使用了BIG IDEAs实验室血糖变异性和可穿戴设备数据(BIGIDEAs)数据集,其中包括大约26000个连续血糖监测(CGM)读数、同时收集的可穿戴设备数据以及人口统计学信息。共构建了236个涵盖生理、行为、昼夜节律和人口统计学因素的特征。使用基于随机森林的重要性分析进行特征选择,以选择与模型训练最相关的特征。我们从预测和临床准确性方面评估了各种ML回归技术的有效性,包括线性回归、岭回归、随机森林回归和XGBoost回归。生物性别、昼夜节律、行为特征以及皮肤电活动(EDA)的紧张性特征成为血糖水平的关键预测因素。基于树的模型在预测和临床准确性方面均优于线性模型。XGBoost(XR)模型表现最佳,决定系数R²为0.73,均方根误差RMSE为11.9mg/dL,归一化均方根误差NRMSE为0.52mg/dL,平均绝对相对误差MARD为7.1%,并且99.4%的预测落在克拉克误差网格的A区和B区。本研究证明了结合特征工程和基于树的ML回归技术用于使用可穿戴传感器进行连续血糖监测的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验