Endrei Tamás, Földi Sándor, Makk Ádám, Cserey György
Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
Jedlik Innovation Ltd., Budapest, Hungary.
Front Robot AI. 2025 May 21;12:1537470. doi: 10.3389/frobt.2025.1537470. eCollection 2025.
Neurological tremors, prevalent among a large population, are one of the most rampant movement disorders. Biomechanical loading and exoskeletons show promise in enhancing patient well-being, but traditional control algorithms limit their efficacy in dynamic movements and personalized interventions. Furthermore, a pressing need exists for more comprehensive and robust validation methods to ensure the effectiveness and generalizability of proposed solutions.
This paper proposes a physical simulation approach modeling multiple arm joints and tremor propagation. This study also introduces a novel adaptable reinforcement learning environment tailored for disorders with tremors. We present a deep reinforcement learning-based encoder-actor controller for Parkinson's tremors in various shoulder and elbow joint axes displayed in dynamic movements.
Our findings suggest that such a control strategy offers a viable solution for tremor suppression in real-world scenarios.
By overcoming the limitations of traditional control algorithms, this work takes a new step in adapting biomechanical loading into the everyday life of patients. This work also opens avenues for more adaptive and personalized interventions in managing movement disorders.
神经震颤在大量人群中普遍存在,是最常见的运动障碍之一。生物力学负荷和外骨骼在改善患者健康方面显示出前景,但传统控制算法限制了它们在动态运动和个性化干预中的效果。此外,迫切需要更全面、强大的验证方法,以确保所提出解决方案的有效性和通用性。
本文提出一种对多个手臂关节和震颤传播进行建模的物理模拟方法。本研究还引入了一种专为震颤疾病量身定制的新型自适应强化学习环境。我们提出了一种基于深度强化学习的编码器-actor控制器,用于动态运动中各种肩部和肘部关节轴的帕金森震颤。
我们的研究结果表明,这种控制策略为现实场景中的震颤抑制提供了可行的解决方案。
通过克服传统控制算法的局限性,这项工作在将生物力学负荷应用于患者日常生活方面迈出了新的一步。这项工作还为管理运动障碍的更自适应和个性化干预开辟了道路。