Ahmadian Milad, Bodalal Zuhir, Bos Paula, Martens Roland M, Agrotis Georgios, van der Hulst Hedda J, Vens Conchita, Karssemakers Luc, Al-Mamgani Abrahim, de Graaf Pim, Jasperse Bas, Brakenhoff Ruud H, Leemans C René, Beets-Tan Regina G H, Castelijns Jonas A, van den Brekel Michiel W M
Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
Department of Radiology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
Eur Radiol. 2025 Jun 6. doi: 10.1007/s00330-025-11709-8.
To assess the impact of image post-processing steps on the generalisability of MRI-based radiogenomic models. Using a human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC) prediction model, this study examines the potential of different post-processing strategies to increase its generalisability across data from different centres and image acquisition protocols.
Contrast-enhanced T1-weighted MR images of OPSCC patients of two cohorts from different centres, with confirmed HPV status, were manually segmented. After radiomic feature extraction, the HPV prediction model trained on a training set with 91 patients was subsequently tested on two independent cohorts: a test set with 62 patients and an externally derived cohort of 157 patients. The data processing options included: data harmonisation, a process to ensure consistency in data from different centres; exclusion of unstable features across different segmentations and scan protocols; and removal of highly correlated features to reduce redundancy.
The predictive model, trained without post-processing, showed high performance on the test set, with an AUC of 0.79 (95% CI: 0.66-0.90, p < 0.001). However, when tested on the external data, the model performed less well, resulting in an AUC of 0.52 (95% CI: 0.45-0.58, p = 0.334). The model's generalisability substantially improved after performing post-processing steps. The AUC for the test set reached 0.76 (95% CI: 0.63-0.87, p < 0.001), while for the external cohort, the predictive model achieved an AUC of 0.73 (95% CI: 0.64-0.81, p < 0.001).
When applied before model development, post-processing steps can enhance the robustness and generalisability of predictive radiogenomics models.
Question How do post-processing steps impact the generalisability of MRI-based radiogenomic prediction models? Findings Applying post-processing steps, i.e., data harmonisation, identification of stable radiomic features, and removal of correlated features, before model development can improve model robustness and generalisability. Clinical relevance Post-processing steps in MRI radiogenomic model generation lead to reliable non-invasive diagnostic tools for personalised cancer treatment strategies.
评估图像后处理步骤对基于MRI的放射基因组模型通用性的影响。本研究使用口咽鳞状细胞癌(OPSCC)预测模型中的人乳头瘤病毒(HPV)状态,检验不同后处理策略提高其在来自不同中心和图像采集协议的数据中的通用性的潜力。
对来自不同中心的两个队列的OPSCC患者的对比增强T1加权MR图像进行手动分割,这些患者的HPV状态已得到确认。在提取放射组学特征后,在一个包含91例患者的训练集上训练的HPV预测模型随后在两个独立队列上进行测试:一个包含62例患者的测试集和一个来自外部的157例患者的队列。数据处理选项包括:数据归一化,这是一个确保来自不同中心的数据一致性的过程;排除不同分割和扫描协议中的不稳定特征;以及去除高度相关特征以减少冗余。
未经后处理训练的预测模型在测试集上表现出高性能,AUC为0.79(95%CI:0.66 - 0.90,p < 0.001)。然而,在外部数据上进行测试时,该模型表现较差,AUC为0.52(95%CI:0.45 - 0.58,p = 0.334)。在执行后处理步骤后,该模型的通用性显著提高。测试集的AUC达到0.76(95%CI:0.63 - 0.87,p < 0.001),而对于外部队列,预测模型的AUC为0.73(95%CI:0.64 - 0.81,p < 0.001)。
在模型开发之前应用后处理步骤可以增强预测性放射基因组模型的稳健性和通用性。
问题 后处理步骤如何影响基于MRI的放射基因组预测模型的通用性? 发现 在模型开发之前应用后处理步骤,即数据归一化、识别稳定的放射组学特征和去除相关特征,可以提高模型的稳健性和通用性。 临床意义 MRI放射基因组模型生成中的后处理步骤可产生用于个性化癌症治疗策略的可靠非侵入性诊断工具。