Suppr超能文献

健康寿命的蛋白质组学特征。

A proteomic signature of healthspan.

作者信息

Kuo Chia-Ling, Liu Peiran, Drouard Gabin, Vuoksimaa Eero, Kaprio Jaakko, Ollikainen Miina, Chen Zhiduo, Pilling Luke C, Atkins Janice L, Fortinsky Richard H, Kuchel George A, Diniz Breno S

机构信息

Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT 06032.

Biostatistics Center, The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2414086122. doi: 10.1073/pnas.2414086122. Epub 2025 Jun 6.

Abstract

The focus of aging research has shifted from increasing lifespan to enhancing healthspan to reduce the time spent living with disability. Despite significant efforts to develop biomarkers of aging, few studies have focused on biomarkers of healthspan. We developed a proteomics-based signature of healthspan [healthspan proteomic score (HPS)] using proteomic data from the Olink Explore 3072 assay in the UK Biobank Pharma Proteomics Project (53,018 individuals and 2,920 proteins). A lower HPS was associated with higher mortality risk and several age-related conditions, such as chronic obstructive pulmonary disease, diabetes, heart failure, cancer, myocardial infarction, dementia, and stroke. HPS showed superior predictive accuracy for these outcomes compared to other biological age measures. Proteins associated with HPS were enriched in hallmark pathways such as immune response, inflammation, cellular signaling, and metabolic regulation. The external validity was evaluated using the Essential Hypertension Epigenetics study with proteomic data also from the Olink Explore 3072 and complementary epigenetic data, making it a valuable tool for assessing healthspan and as a potential surrogate marker to complement existing proteomic and epigenetic biological age measures in geroscience-guided studies.

摘要

衰老研究的重点已从延长寿命转向提高健康寿命,以减少与残疾相伴的时间。尽管在开发衰老生物标志物方面付出了巨大努力,但很少有研究关注健康寿命的生物标志物。我们利用英国生物银行药物蛋白质组学项目中Olink Explore 3072检测的蛋白质组数据(53018名个体和2920种蛋白质),开发了一种基于蛋白质组学的健康寿命特征[健康寿命蛋白质组学评分(HPS)]。较低的HPS与较高的死亡风险以及几种与年龄相关的疾病有关,如慢性阻塞性肺疾病、糖尿病、心力衰竭、癌症、心肌梗死、痴呆和中风。与其他生物年龄测量方法相比,HPS对这些结果显示出更高的预测准确性。与HPS相关的蛋白质在免疫反应、炎症、细胞信号传导和代谢调节等标志性途径中富集。使用原发性高血压表观遗传学研究评估了外部有效性,该研究也使用了来自Olink Explore 3072的蛋白质组数据和补充的表观遗传学数据,使其成为评估健康寿命的有价值工具,以及在老年科学指导研究中作为补充现有蛋白质组学和表观遗传学生物年龄测量方法的潜在替代标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2019/12168021/52c444d78b6c/pnas.2414086122fig01.jpg

相似文献

1
A proteomic signature of healthspan.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2414086122. doi: 10.1073/pnas.2414086122. Epub 2025 Jun 6.
2
A proteomic signature of healthspan.
medRxiv. 2025 Mar 28:2024.06.26.24309530. doi: 10.1101/2024.06.26.24309530.
3
Effects of a gluten-reduced or gluten-free diet for the primary prevention of cardiovascular disease.
Cochrane Database Syst Rev. 2022 Feb 24;2(2):CD013556. doi: 10.1002/14651858.CD013556.pub2.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
5
Nutritional associations with decelerated epigenetic aging: vegan diet in a Dutch population.
Clin Epigenetics. 2025 Jul 29;17(1):133. doi: 10.1186/s13148-025-01934-9.
6
Measures implemented in the school setting to contain the COVID-19 pandemic.
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.
7
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.
Alzheimers Dement. 2021 Apr;17(4):704-715. doi: 10.1002/alz.12215. Epub 2021 Jan 21.
8
Development, characterization, and replication of proteomic aging clocks: Analysis of 2 population-based cohorts.
PLoS Med. 2024 Sep 24;21(9):e1004464. doi: 10.1371/journal.pmed.1004464. eCollection 2024 Sep.
9
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

引用本文的文献

1
Biological aging acceleration in major depressive disorder: a multi-omics, multi-modal analyses.
Res Sq. 2025 May 28:rs.3.rs-6716774. doi: 10.21203/rs.3.rs-6716774/v1.

本文引用的文献

1
Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems.
Cell Metab. 2025 Jan 7;37(1):205-222.e6. doi: 10.1016/j.cmet.2024.10.005. Epub 2024 Nov 1.
2
Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations.
Nat Med. 2024 Sep;30(9):2450-2460. doi: 10.1038/s41591-024-03164-7. Epub 2024 Aug 8.
3
Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults.
Aging Cell. 2024 Aug;23(8):e14195. doi: 10.1111/acel.14195. Epub 2024 May 15.
4
NMR metabolomic modeling of age and lifespan: A multicohort analysis.
Aging Cell. 2024 Jul;23(7):e14164. doi: 10.1111/acel.14164. Epub 2024 Apr 18.
5
Global Healthspan Summit 2023: closing the gap between healthspan and lifespan.
Nat Aging. 2024 Apr;4(4):445-448. doi: 10.1038/s43587-024-00593-4.
6
Plasma proteomic signature of human longevity.
Aging Cell. 2024 Jun;23(6):e14136. doi: 10.1111/acel.14136. Epub 2024 Mar 5.
7
Prospective study design and data analysis in UK Biobank.
Sci Transl Med. 2024 Jan 10;16(729):eadf4428. doi: 10.1126/scitranslmed.adf4428.
8
Prognostic accuracy of 70 individual frailty biomarkers in predicting mortality in the Canadian Longitudinal Study on Aging.
Geroscience. 2024 Jun;46(3):3061-3069. doi: 10.1007/s11357-023-01055-2. Epub 2024 Jan 6.
9
Organ aging signatures in the plasma proteome track health and disease.
Nature. 2023 Dec;624(7990):164-172. doi: 10.1038/s41586-023-06802-1. Epub 2023 Dec 6.
10
Plasma proteomic profiles predict individual future health risk.
Nat Commun. 2023 Nov 28;14(1):7817. doi: 10.1038/s41467-023-43575-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验