Ji Chenyang, Jiang Tong, Liu Luolin, Zhang Jiale, You Liangzhen
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Front Endocrinol (Lausanne). 2025 May 26;16:1571362. doi: 10.3389/fendo.2025.1571362. eCollection 2025.
Prediabetes represents an early stage of glucose metabolism disorder with significant public health implications. Although traditional lifestyle interventions have demonstrated some efficacy in preventing the progression to type 2 diabetes, their limitations-such as lack of personalization, restricted real-time monitoring, and delayed intervention-are increasingly apparent. This article systematically explores the potential applications of continuous glucose monitoring (CGM) technology combined with artificial intelligence (AI) in the management of prediabetes. CGM provides real-time and dynamic glucose monitoring, addressing the shortcomings of conventional methods, while AI enhances the clinical utility of CGM data through deep learning and advanced data analysis. This review examines the advantages of integrating CGM and AI from three perspectives: precise diagnosis, personalized intervention, and decision support. Additionally, it highlights the unique roles of this integration in remote monitoring, shared decision-making, and patient empowerment. The article further discusses challenges related to data management, algorithm optimization, ethical considerations, and future directions for this technological integration. It proposes fostering multidisciplinary collaboration to promote the application of these innovations in diabetes management, aiming to deliver a more precise and efficient health management model for individuals with prediabetes.
糖尿病前期是糖代谢紊乱的早期阶段,具有重大的公共卫生意义。尽管传统的生活方式干预措施在预防进展为2型糖尿病方面已显示出一定疗效,但其局限性——如缺乏个性化、实时监测受限和干预延迟——日益明显。本文系统探讨了持续葡萄糖监测(CGM)技术与人工智能(AI)相结合在糖尿病前期管理中的潜在应用。CGM提供实时动态血糖监测,解决了传统方法的缺点,而AI通过深度学习和先进的数据分析提高了CGM数据的临床效用。本综述从精准诊断、个性化干预和决策支持三个角度审视了整合CGM和AI的优势。此外,它还强调了这种整合在远程监测、共同决策和患者赋权方面的独特作用。文章进一步讨论了与数据管理、算法优化、伦理考量以及这种技术整合的未来方向相关的挑战。它提议促进多学科合作,以推动这些创新在糖尿病管理中的应用,旨在为糖尿病前期患者提供更精准、高效的健康管理模式。