Suppr超能文献

机器学习算法整合批量和单细胞RNA数据,以揭示特发性肺纤维化后NOTCH和自噬活性的相互作用及异质性。

Machine learning algorithms integrate bulk and single-cell RNA data to reveal the crosstalk and heterogeneity of NOTCH and autophagy activity following idiopathic pulmonary fibrosis.

作者信息

Lian Zhichuang, Xu Jingran, Maolahong Sumanye, Ha Yina, Hasimujiang Maheliya, Maimaitiniyazi Mailidan, Wu Chao, Chen Liping

机构信息

Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China; Xinjiang Clinical Medical Research Center for Respiratory Diseases, Urumqi 830001, China.

Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi 844000, China.

出版信息

Int Immunopharmacol. 2025 Aug 28;161:115017. doi: 10.1016/j.intimp.2025.115017. Epub 2025 Jun 9.

Abstract

BACKGROUND

NOTCH and autophagy significantly impact the pathogenesis of idiopathic pulmonary fibrosis (IPF); however, studies exploring their heterogeneity and potential correlation at the single-cell level are still lacking. Identifying the feature genes that are commonly regulated by both NOTCH and autophagy could significantly increase our understanding of IPF.

METHODS

We used single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of NOTCH and autophagy activity across various cell types following IPF, with the aim of obtaining comprehensive biological insights into IPF. We utilized the AUCell, Ucell, singscore, ssGSEA, and AddModuleScore algorithms to identify common positively and negatively regulated NOTCH and autophagy activities at the IPF cellular level. Furthermore, we employed six machine learning algorithms, eXtreme Gradient Boosting, Boruta, random forest, least absolute shrinkage and selection operator, GBM, and SVM-RFE, to identify the optimal feature genes related to IPF at the BulkRNA-seq level. We further leveraged CellChat and pseudotime analysis to delve into the potential biological regulatory mechanisms of the characteristic genes.We further performed protein-level validation of key NOTCH and autophagy markers using Western blotting to confirm the consistency between transcriptomic predictions and pathway activation.

RESULTS

For the first time, at the cellular level, we showed that NOTCH and autophagy activities exhibit heterogeneity across different cell layers following IPF. However, their activities are remarkably consistent; they are highly active in macrophages, fibroblasts, monocytes, and lymphatic endothelial cells, whereas they display lower activity in NK, T, and plasma cells. These findings indicate a correlation between these two pathways in IPF. Consequently, we defined a set of genes that coregulate both pathways at the IPF level. Using various machine learning algorithms, we further identified key predictive genes for IPF, namely, IGFBP7, PPIC, and RUNX1.Western blot assays confirmed that the protein expression of NOTCH1, HEY1, HES1, Beclin1, and P62 followed the same activation trends inferred from transcriptomic analysis.

CONCLUSIONS

In IPF, IGFBP7, PPIC, and RUNX1 might simultaneously upregulate NOTCH and autophagy activities in fibroblasts and lymphatic endothelial cells and further contribute to IPF progression.

摘要

背景

NOTCH和自噬对特发性肺纤维化(IPF)的发病机制有显著影响;然而,在单细胞水平上探索它们的异质性和潜在相关性的研究仍然缺乏。确定受NOTCH和自噬共同调控的特征基因可能会显著增进我们对IPF的理解。

方法

我们使用单细胞RNA测序(scRNA-seq)来研究IPF后不同细胞类型中NOTCH和自噬活性的异质性,旨在获得对IPF的全面生物学见解。我们利用AUCell、Ucell、singscore、ssGSEA和AddModuleScore算法来确定IPF细胞水平上NOTCH和自噬活性共同的正向和负向调控。此外,我们采用六种机器学习算法,即极端梯度提升、Boruta、随机森林、最小绝对收缩和选择算子、GBM和支持向量机递归特征消除,来确定BulkRNA-seq水平上与IPF相关的最佳特征基因。我们进一步利用CellChat和伪时间分析来深入探究特征基因的潜在生物学调控机制。我们进一步使用蛋白质印迹法对关键的NOTCH和自噬标志物进行蛋白质水平验证,以确认转录组预测与通路激活之间的一致性。

结果

首次在细胞水平上,我们表明IPF后NOTCH和自噬活性在不同细胞层中表现出异质性。然而,它们的活性非常一致;它们在巨噬细胞、成纤维细胞、单核细胞和淋巴管内皮细胞中高度活跃,而在自然杀伤细胞、T细胞和浆细胞中活性较低。这些发现表明IPF中这两条通路之间存在相关性。因此,我们定义了一组在IPF水平上共同调控这两条通路的基因。使用各种机器学习算法,我们进一步确定了IPF的关键预测基因,即胰岛素样生长因子结合蛋白7(IGFBP7)、肽基脯氨酰异构酶C(PPIC)和RUNX1。蛋白质印迹分析证实,NOTCH1、HEY1、HES1、Beclin1和P62的蛋白表达遵循转录组分析推断的相同激活趋势。

结论

在IPF中,IGFBP7、PPIC和RUNX1可能同时上调成纤维细胞和淋巴管内皮细胞中的NOTCH和自噬活性,并进一步促进IPF进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验