Suppr超能文献

揭开无形之谜:前沿神经成像技术如何改变青少年抑郁症的诊断

Unveiling the invisible: How cutting-edge neuroimaging transforms adolescent depression diagnosis.

作者信息

Byeon Haewon

机构信息

Worker's Care and Digital Health Lab, Department of Future Technology, Korea University of Technology and Education, Cheonan 31253, South Korea.

出版信息

World J Psychiatry. 2025 May 19;15(5):102953. doi: 10.5498/wjp.v15.i5.102953.

Abstract

Yu 's study has advanced the understanding of the neural mechanisms underlying major depressive disorder (MDD) in adolescents, emphasizing the significant role of the amygdala. While traditional diagnostic methods have limitations in objectivity and accuracy, this research demonstrates a notable advancement through the integration of machine learning techniques with neuroimaging data. Utilizing resting-state functional magnetic resonance imaging (fMRI), the study investigated functional connectivity (FC) in adolescents with MDD, identifying notable reductions in regions such as the left inferior temporal gyrus and right lingual gyrus, alongside increased connectivity in Vermis-10. The application of support vector machines (SVM) to resting-state fMRI (rs-fMRI) data achieved an accuracy of 83.91%, sensitivity of 79.55%, and specificity of 88.37%, with an area under the curve of 0.6765. These results demonstrate how SVM analysis of rs-fMRI data represents a significant improvement in diagnostic precision, with reduced FC in the right lingual gyrus emerging as a particularly critical marker. These findings underscore the critical role of the amygdala in MDD pathophysiology and highlight the potential of rs-fMRI and SVM as tools for identifying reliable neuroimaging biomarkers.

摘要

余的研究推进了对青少年重度抑郁症(MDD)潜在神经机制的理解,强调了杏仁核的重要作用。虽然传统诊断方法在客观性和准确性方面存在局限性,但这项研究通过将机器学习技术与神经影像数据相结合,展示了显著的进展。该研究利用静息态功能磁共振成像(fMRI),调查了患有MDD的青少年的功能连接性(FC),发现左颞下回和右舌回等区域的功能连接性显著降低,同时蚓部10的连接性增加。将支持向量机(SVM)应用于静息态fMRI(rs-fMRI)数据,准确率达到83.91%,灵敏度为79.55%,特异性为88.37%,曲线下面积为0.6765。这些结果表明,对rs-fMRI数据进行SVM分析在诊断精度方面有显著提高,右舌回功能连接性降低是一个特别关键的标志物。这些发现强调了杏仁核在MDD病理生理学中的关键作用,并突出了rs-fMRI和SVM作为识别可靠神经影像生物标志物工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2efa/12146993/08964a6546e5/102953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验