Pak Banya, Kim Chaeeun, Kwon Seung-Hae, Lee Joon-Kyu, Jeon Sang-Hak
Department of Science Education, Seoul National University, Seoul, Republic of Korea.
Korea Basic Science Institute, Seoul Center, Seoul, Republic of Korea.
J Parkinsons Dis. 2025 Aug;15(5):957-969. doi: 10.1177/1877718X251349407. Epub 2025 Jun 16.
BackgroundParkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons. While abnormal protein aggregation has been classically implicated in PD, increasing evidence suggests that lipid dysregulation may also contribute to neuronal vulnerability. Recent studies have begun to link abnormal phosphatidylserine (PS) metabolism to mitochondrial impairment and dopaminergic neuron loss in PD, yet the underlying cellular mechanisms remain poorly defined.ObjectiveThis study aimed to determine how impaired PS synthesis in cortex glia affects mitochondrial function, oxidative stress, and dopaminergic neuron survival, using a model of glia-specific () knockdown.MethodsTo dissect the glial contribution to PS-related neurodegeneration, we employed a model in which the gene was selectively knocked down in cortex glia using the GAL4-UAS system. We evaluated PD-like phenotypes by assessing the number of dopaminergic neurons in the PPL1 and PPL2 clusters, as well as locomotor activity and lifespan, following glia-specific knockdown of gene.ResultsCortex glia-specific knockdown of impaired locomotion and reduced lifespan in flies, indicating a systemic decline in neuronal and mitochondrial function. knockdown reduced () expression, disrupted mitochondrial gene expression, and elevated ROS levels. Western blot analysis also revealed reduced AKT phosphorylation without changes in total AKT. These results ultimately lead to loss of dopaminergic neurons.ConclusionsThese findings establish a mechanistic link among abnormal PS metabolism, impaired AKT signaling, mitochondrial dysfunction, and dopaminergic neuron loss. Our study provides novel evidence that glia-driven abnormalities in PS metabolism may cause PD-like neurodegeneration, offering mechanistic insights and potential therapeutic targets.
背景
帕金森病(PD)是一种常见的神经退行性疾病,其特征是多巴胺能神经元逐渐丧失。虽然异常蛋白质聚集一直被认为是帕金森病的经典病因,但越来越多的证据表明,脂质失调也可能导致神经元易损性。最近的研究已开始将异常的磷脂酰丝氨酸(PS)代谢与帕金森病中的线粒体损伤和多巴胺能神经元丢失联系起来,但其潜在的细胞机制仍不清楚。
目的
本研究旨在利用胶质细胞特异性()敲低模型,确定皮质胶质细胞中PS合成受损如何影响线粒体功能、氧化应激和多巴胺能神经元存活。
方法
为了剖析胶质细胞对PS相关神经退行性变的作用,我们采用了一种模型,其中利用GAL4-UAS系统在皮质胶质细胞中选择性敲低基因。在胶质细胞特异性敲低基因后,我们通过评估PPL1和PPL2簇中多巴胺能神经元的数量以及运动活性和寿命,来评估帕金森病样表型。
结果
皮质胶质细胞特异性敲低会损害果蝇的运动能力并缩短其寿命,表明神经元和线粒体功能出现全身性下降。敲低会降低()的表达,破坏线粒体基因表达,并提高活性氧水平。蛋白质免疫印迹分析还显示AKT磷酸化减少,而总AKT没有变化。这些结果最终导致多巴胺能神经元丢失。
结论
这些发现建立了异常PS代谢、受损的AKT信号传导、线粒体功能障碍和多巴胺能神经元丢失之间的机制联系。我们的研究提供了新的证据,即胶质细胞驱动的PS代谢异常可能导致帕金森病样神经退行性变,为机制研究提供了见解和潜在的治疗靶点。