Suppr超能文献

基于机器学习和可视化技术的中老年抑郁症风险预测系统:一项队列研究

A risk prediction system for depression in middle-aged and older adults grounded in machine learning and visualization technology: a cohort study.

作者信息

Du Jinsong, Tao Xinru, Zhu Le, Qi Wenhao, Min Xiaoqiang, Deng Hongyan, Wei Shujie, Zhang Xiaoyan, Chang Xiao

机构信息

School of Health Management, Zaozhuang University, Zaozhuang, China.

School of Public Administration, Hangzhou Normal University, Hangzhou, China.

出版信息

Front Public Health. 2025 Jun 4;13:1606316. doi: 10.3389/fpubh.2025.1606316. eCollection 2025.

Abstract

INTRODUCTION

Middle-aged and older adults are highly susceptible to depression. For this reason, early identification and intervention can substantially reduce its prevalence. This study innovatively proposed a visual risk prediction system for depressive symptoms and depression in middle-aged and older adults, rooted in machine learning and visualization technologies.

METHODS

Using cohort data from the China Health and Retirement Longitudinal Study (CHARLS), involving 8,839 middle-aged and older adult participants, the study developed predictive models based on eight machine learning algorithms, primarily including LightGBM, XGBoost, and AdaBoost. To enhance the interpretability of the XGBoost model, SHAP technology was employed to visualize the prediction results. The model was then deployed on a web platform to establish the risk prediction system.

RESULTS

Among the models, XGBoost demonstrated the best performance, achieving an average ROC-AUC of 0.69, and was ultimately selected as the predictive model for depressive symptoms and depression risk in this population. The developed risk prediction system can output the probability of users developing depressive symptoms or depression within five years and provide explanations for the prediction results, improving user accessibility and interpretability.

DISCUSSION

Rooted in China's national longitudinal cohort, this platform integrates machine learning analytics with interactive visualization, with web deployment enhancing its clinical translational value. By enabling early depression detection and evidence-based interventions for middle-aged and older adult populations, it establishes a novel health management paradigm with demonstrated potential to improve quality of life.

摘要

引言

中老年人极易患抑郁症。因此,早期识别和干预可大幅降低其患病率。本研究创新性地提出了一种基于机器学习和可视化技术的中老年人抑郁症状及抑郁症视觉风险预测系统。

方法

利用中国健康与养老追踪调查(CHARLS)的队列数据,该研究涉及8839名中老年参与者,基于八种机器学习算法开发了预测模型,主要包括LightGBM、XGBoost和AdaBoost。为提高XGBoost模型的可解释性,采用SHAP技术对预测结果进行可视化。然后将该模型部署在网络平台上,以建立风险预测系统。

结果

在这些模型中,XGBoost表现最佳,平均ROC-AUC达到0.69,最终被选为该人群抑郁症状及抑郁风险的预测模型。所开发的风险预测系统能够输出用户在五年内出现抑郁症状或抑郁症的概率,并为预测结果提供解释,提高了用户的可及性和可解释性。

讨论

该平台基于中国国家纵向队列,将机器学习分析与交互式可视化相结合,通过网络部署提高了其临床转化价值。通过能够对中老年人群进行早期抑郁症检测和循证干预,它建立了一种新的健康管理模式,具有改善生活质量的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebff/12173875/0ac54b7c88ec/fpubh-13-1606316-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验