Suppr超能文献

利用深度学习对高亲和力蛋白质结合大环化合物进行精确的从头设计。

Accurate de novo design of high-affinity protein-binding macrocycles using deep learning.

作者信息

Rettie Stephen A, Juergens David, Adebomi Victor, Bueso Yensi Flores, Zhao Qinqin, Leveille Alexandria N, Liu Andi, Bera Asim K, Wilms Joana A, Üffing Alina, Kang Alex, Brackenbrough Evans, Lamb Mila, Gerben Stacey R, Murray Analisa, Levine Paul M, Schneider Maika, Vasireddy Vibha, Ovchinnikov Sergey, Weiergräber Oliver H, Willbold Dieter, Kritzer Joshua A, Mougous Joseph D, Baker David, DiMaio Frank, Bhardwaj Gaurav

机构信息

Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.

Institute for Protein Design, University of Washington, Seattle, WA, USA.

出版信息

Nat Chem Biol. 2025 Jun 20. doi: 10.1038/s41589-025-01929-w.

Abstract

Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (K < 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation < 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.

摘要

开发针对治疗性蛋白质的大环结合物通常依赖于大规模筛选方法,这些方法资源密集且对结合模式的控制有限。尽管蛋白质设计取得了进展,但目前尚无用于从头设计蛋白质结合大环的可靠方法。在此,我们介绍了RFpeptides,这是一种基于去噪扩散的流程,用于设计针对感兴趣的蛋白质靶标的大环结合物。我们针对四种不同的蛋白质分别测试了20个或更少设计的大环,并获得了对所有靶标具有中等到高亲和力的结合物。对于其中一个靶标,菱形靶标A(RbtA),尽管从预测的靶标结构开始,我们仍设计出了一种高亲和力结合物(K < 10 nM)。大环结合的髓样细胞白血病1、γ-氨基丁酸A型受体相关蛋白和RbtA复合物的X射线结构与计算模型紧密匹配,与设计模型的Cα均方根偏差< 1.5 Å。RFpeptides为用于诊断和治疗应用的大环肽的快速定制设计提供了一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验