Kursawe Jochen, Moneyron Antoine, Galla Tobias
School of Mathematics and Statistics, University of St Andrews, St Andrews, UK.
INRIA, Universite de Rennes, Rennes, Bretagne, France.
J R Soc Interface. 2025 Jun;22(227):20250170. doi: 10.1098/rsif.2025.0170. Epub 2025 Jun 25.
Mathematical models of gene regulatory networks are widely used to study cell fate changes and transcriptional regulation. When designing such models, it is important to accurately account for sources of stochasticity. However, doing so can be computationally expensive and analytically untractable, posing limits on the extent of our explorations and on parameter inference. Here, we explore this challenge using the example of a simple auto-negative feedback motif, in which we incorporate stochastic variation due to transcriptional bursting and noise from finite copy numbers. We find that transcriptional bursting may change the qualitative dynamics of the system by inducing oscillations when they would not otherwise be present, or by magnifying existing oscillations. We describe multiple levels of approximation for the model in the form of differential equations, piecewise-deterministic processes and stochastic differential equations. Importantly, we derive how the classical chemical Langevin equation can be extended to include a noise term representing transcriptional bursting. This approximation drastically decreases computation times and allows us to analytically calculate properties of the dynamics, such as their power spectrum. We explore when these approximations break down and provide recommendations for their use. Our analysis illustrates the importance of accounting for transcriptional bursting when simulating gene regulatory network dynamics and provides recommendations to do so with computationally efficient methods.
基因调控网络的数学模型被广泛用于研究细胞命运变化和转录调控。在设计此类模型时,准确考虑随机性来源非常重要。然而,这样做可能在计算上成本高昂且难以进行解析处理,这对我们探索的范围和参数推断都构成了限制。在这里,我们以一个简单的自负反馈基序为例来探讨这一挑战,在该基序中,我们纳入了由于转录爆发和有限拷贝数噪声导致的随机变化。我们发现转录爆发可能会改变系统的定性动力学,通过在原本不存在振荡时诱导振荡,或者通过放大现有的振荡。我们以微分方程、分段确定性过程和随机微分方程的形式描述了该模型的多个近似层次。重要的是,我们推导了经典化学朗之万方程如何能够扩展以包含一个表示转录爆发的噪声项。这种近似极大地减少了计算时间,并使我们能够解析计算动力学的性质,比如它们的功率谱。我们探究了这些近似何时失效,并为其使用提供了建议。我们的分析说明了在模拟基因调控网络动力学时考虑转录爆发的重要性,并提供了使用计算高效方法来做到这一点的建议。