Elyassirad Danial, Gheiji Benyamin, Vatanparast Mahsa, Ahmadzadeh Amir Mahmoud, Masoudi Mohammad, Gholami Mobin, Moassefi Mana, Faghani Shahriar
Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
J Imaging Inform Med. 2025 Jun 25. doi: 10.1007/s10278-025-01580-w.
The World Health Organization glioma classification highlights genetic profiles, such as isocitrate dehydrogenase (IDH) mutation. This study developed an uncertainty-aware deep learning model to predict IDH mutations in glioma patients, employing conformal prediction (CP) for uncertainty quantification (UQ). The UCSF dataset split into training (70%) and validation (30%) sets, and the UPENN dataset divided into calibration (30%) and external test (70%) sets. We developed various 3D convolutional neural network models and selected the best based on the validation set area under the precision-recall curve (AUPRC). Also, we trained a logistic regression (LR) ensemble classifier on the training set and selected the best ensemble model based on the validation set AUPRC. Finally, we employed CP, with nonconformity thresholds set at the error rate of 0.01. The conformal model was calibrated on the calibration set and was evaluated on the external test set using the AUPRC and the area under the receiver operating characteristic (AUROC). 3D convolutional models achieved a mean AUROC and AUPRC of 0.9004 and 0.8102 on the validation set, and a mean AUROC and AUPRC of 0.7340 and 0.2139 on the external test set, respectively. Using the LR ensemble model, the model achieved an AUROC and AUPRC of 0.79820 and 0.2583 on the external test set, respectively. CP with a 0.01 nonconformity threshold with 0.9917 coverage reached an AUROC and AUPRC of 0.8592 and 0.5217, respectively. Integrating CP for UQ improves the performance of deep learning models for predicting IDH mutation in glioma patients.
世界卫生组织的胶质瘤分类突出了基因特征,如异柠檬酸脱氢酶(IDH)突变。本研究开发了一种不确定性感知深度学习模型,用于预测胶质瘤患者的IDH突变,并采用共形预测(CP)进行不确定性量化(UQ)。将UCSF数据集分为训练集(70%)和验证集(30%),将UPENN数据集分为校准集(30%)和外部测试集(70%)。我们开发了各种3D卷积神经网络模型,并根据精确召回率曲线下的验证集面积(AUPRC)选择最佳模型。此外,我们在训练集上训练了一个逻辑回归(LR)集成分类器,并根据验证集AUPRC选择最佳集成模型。最后,我们采用CP,将不一致阈值设置为0.01的错误率。共形模型在校准集上进行校准,并在外部测试集上使用AUPRC和接收器操作特征曲线下的面积(AUROC)进行评估。3D卷积模型在验证集上的平均AUROC和AUPRC分别为0.9004和0.8102,在外部测试集上的平均AUROC和AUPRC分别为0.7340和0.2139。使用LR集成模型,该模型在外部测试集上的AUROC和AUPRC分别为0.79820和0.2583。具有0.9917覆盖率的0.01不一致阈值的CP的AUROC和AUPRC分别达到0.8592和0.5217。将CP集成到UQ中可提高深度学习模型预测胶质瘤患者IDH突变的性能。