Suppr超能文献

利用微生物组、细菌细胞外囊泡和人工智能进行多囊卵巢综合征的诊断与管理。

Harnessing Microbiome, Bacterial Extracellular Vesicle, and Artificial Intelligence for Polycystic Ovary Syndrome Diagnosis and Management.

作者信息

Kushawaha Bhawna, Rem Tial T, Pelosi Emanuele

机构信息

Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, USA.

出版信息

Biomolecules. 2025 Jun 7;15(6):834. doi: 10.3390/biom15060834.

Abstract

Polycystic ovary syndrome (PCOS) affects 6-19% of reproductive-age women worldwide, yet diagnosis remains challenging due to heterogeneous presentations and symptoms overlapping with other endocrine disorders. Recent studies have shown that gut dysbiosis plays a significant role in PCOS pathophysiology, with bacterial extracellular vesicles (BEVs) functioning as critical mediators of the gut-ovary axis. BEVs carry distinct cargos in PCOS patients-including specific miRNAs and inflammatory proteins-and show promise for both diagnostic and therapeutic applications. Artificial intelligence (AI) is emerging as a promising significant tool in PCOS research due to improved diagnostic accuracy and the capability to analyze complex datasets combining microbiome, BEV, and clinical parameters. These integrated approaches have the potential to better address PCOS multifactorial nature, enabling improved phenotypic classification and personalized treatment strategies. This review examines recent advances in the last 25 years in microbiome, BEV, and AI applications in PCOS research using PubMed, Web of Science, and Scopus databases. We explore the diagnostic potential of the AI-driven analysis of microbiome and BEV profiles, and address ethical considerations including data privacy and algorithmic bias. As these technologies continue to evolve, they hold increasing potential for the improvement of PCOS diagnosis and management, including the development of safer, more precise, and effective interventions.

摘要

多囊卵巢综合征(PCOS)影响着全球6%至19%的育龄妇女,但由于其临床表现多样且症状与其他内分泌疾病重叠,诊断仍然具有挑战性。最近的研究表明,肠道微生物群失调在PCOS的病理生理学中起着重要作用,细菌细胞外囊泡(BEV)作为肠-卵巢轴的关键介质发挥作用。BEV在PCOS患者中携带不同的货物——包括特定的miRNA和炎症蛋白——并在诊断和治疗应用方面显示出前景。由于提高了诊断准确性以及能够分析结合微生物组、BEV和临床参数的复杂数据集,人工智能(AI)正在成为PCOS研究中有前景的重要工具。这些综合方法有可能更好地应对PCOS的多因素性质,实现更好的表型分类和个性化治疗策略。本综述使用PubMed、科学网和Scopus数据库,研究了过去25年中微生物组、BEV和AI在PCOS研究中的应用进展。我们探讨了人工智能驱动的微生物组和BEV谱分析的诊断潜力,并讨论了包括数据隐私和算法偏差在内的伦理考量。随着这些技术的不断发展,它们在改善PCOS诊断和管理方面的潜力越来越大,包括开发更安全、更精确和有效的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验