Lucariello Miriam, Valicenti Maria Luisa, Giannoni Samuele, Donati Leonardo, Armentano Ilaria, Morena Francesco, Martino Sabata
Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy.
Department of Economics, Engineering, Society and Business Organization (DEIM), UdR INSTM, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
Biomolecules. 2025 Jun 10;15(6):848. doi: 10.3390/biom15060848.
Mechanical forces are increasingly recognised as fundamental regulators of cellular function, complementing classical biochemical cues to direct development, tissue homeostasis, and disease progression. Cells detect external and internal forces via mechanosensor proteins and adapt their cytoskeletal architecture, leading to changes in cell behaviour. Biomaterials and biodevices come to the aid of tailoring biomaterials' properties in terms of chemical/physical properties and, by emulating dynamical forces, e.g., shear stress and cell swelling, they may enlighten mechanobiological processes. Additionally, emerging technologies expand the experimental toolkit for probing mechanobiological phenomena in complex, customisable settings. Central to these processes are mechanotransducer proteins and membrane-organelle networks that convert mechanical deformation into biochemical signals, orchestrating downstream transcriptional and post-translational modifications. This review highlights how through bridging material engineering and cellular mechanics, mechanobiology provides a unified framework to understand how physical forces shape tissues and drive pathologies. The continued integration of advanced biomaterials, dynamic biodevices, and multiscale analytical methods promises to uncover new mechanistic insights and inform the development of mechanotherapeutic strategies.
机械力越来越被认为是细胞功能的基本调节因子,它补充了经典的生化信号,以指导发育、组织稳态和疾病进展。细胞通过机械传感蛋白检测外部和内部的力,并调整其细胞骨架结构,从而导致细胞行为的改变。生物材料和生物装置有助于在化学/物理性质方面定制生物材料的特性,并且通过模拟动态力,例如剪切应力和细胞肿胀,它们可以阐明力学生物学过程。此外,新兴技术扩展了用于在复杂、可定制环境中探测力学生物学现象的实验工具包。这些过程的核心是机械转导蛋白和膜-细胞器网络,它们将机械变形转化为生化信号,协调下游的转录和翻译后修饰。本综述强调了通过架起材料工程和细胞力学之间的桥梁,力学生物学如何提供一个统一的框架来理解物理力如何塑造组织并驱动病理过程。先进生物材料、动态生物装置和多尺度分析方法的持续整合有望揭示新的机制见解,并为机械治疗策略的发展提供信息。