Fecske Dóra, Kasza György, Gyulai Gergő, Horváti Kata, Szabó Márk, Wacha András, Varga Zoltán, Szarka Györgyi, Thomann Yi, Thomann Ralf, Mülhaupt Rolf, Kiss Éva, Domján Attila, Bősze Szilvia, Bereczki Laura, Iván Béla
Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
Hevesy György Doctoral School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
Int J Mol Sci. 2025 Jun 19;26(12):5866. doi: 10.3390/ijms26125866.
Delivering of hydrophobic drugs by polymeric nanoparticles is an intensively investigated research and development field worldwide due to the insufficient solubility of many existing and potential new drugs in aqueous media. Among polymeric nanoparticles, micelles of biocompatible amphiphilic block copolymers are among the most promising candidates for solubilization, encapsulation, and delivery of hydrophobic drugs to improve the water solubility and thus the bioavailability of such drugs. In this study, amphiphilic ABA triblock copolymers containing biocompatible hydrophilic hyperbranched (dendritic) polyglycerol (HbPG) outer and hydrophobic poly(tetrahydrofuran) (PTHF) inner segments were synthesized using amine-telechelic PTHF as a macroinitiator for glycidol polymerization. These hyperbranched-linear-hyperbranched block copolymers form nanosized micelles with 15-20 nm diameter above the critical micelle concentration. Coagulation experiments proved high colloidal stability of the aqueous micellar solutions of these block copolymers against temperature changes. The applicability of block copolymers as drug delivery systems was investigated using curcumin, a highly hydrophobic, water-insoluble, natural anti-cancer agent. High and efficient drug solubilization up to more than 3 orders of magnitude to that of the water solubility of curcumin (>1500-fold) is achieved with the HbPG-PTHF-HbPG block copolymer nanomicelles, locating the drug in amorphous form in the inner PTHF core. Outstanding stability of and sustained curcumin release from the drug-loaded block copolymer micelles were observed. The in vitro bioactivity of the curcumin-loaded nanomicelles was investigated on U-87 glioblastoma cell line, and an optimal triblock copolymer composition was found, which showed highly effective cellular uptake and no toxicity. These findings indicate that the HbPG-PTHF-HbPG triblock copolymers are promising candidates for advanced drug solubilization and delivery systems.
由于许多现有和潜在的新药在水性介质中的溶解度不足,通过聚合物纳米颗粒递送疏水性药物是全球范围内一个深入研究的研发领域。在聚合物纳米颗粒中,生物相容性两亲性嵌段共聚物的胶束是增溶、包封和递送疏水性药物以提高其水溶性从而提高此类药物生物利用度的最有前途的候选者之一。在本研究中,使用胺封端的聚四氢呋喃作为缩水甘油聚合的大分子引发剂,合成了含有生物相容性亲水性超支化(树枝状)聚甘油(HbPG)外层和疏水性聚四氢呋喃(PTHF)内层链段的两亲性ABA三嵌段共聚物。这些超支化-线性-超支化嵌段共聚物在临界胶束浓度以上形成直径为15-20nm的纳米级胶束。凝聚实验证明了这些嵌段共聚物的胶束水溶液在温度变化时具有高胶体稳定性。使用姜黄素(一种高度疏水、水不溶性的天然抗癌剂)研究了嵌段共聚物作为药物递送系统的适用性。HbPG-PTHF-HbPG嵌段共聚物纳米胶束实现了高达超过3个数量级(>1500倍)的高效药物增溶,使药物以无定形形式位于内部PTHF核中。观察到载药嵌段共聚物胶束具有出色的稳定性和姜黄素的持续释放。在U-87胶质母细胞瘤细胞系上研究了载姜黄素纳米胶束的体外生物活性,发现了一种最佳的三嵌段共聚物组成,其显示出高效的细胞摄取且无毒性。这些发现表明HbPG-PTHF-HbPG三嵌段共聚物是先进药物增溶和递送系统的有前途的候选者。